Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 739
Filtrar
1.
J Agric Food Chem ; 72(38): 20944-20958, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259217

RESUMEN

Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.


Asunto(s)
Apoptosis , Lesión Pulmonar , Ratones Endogámicos C57BL , Mitocondrias , Estrés Oxidativo , Cofactor PQQ , Animales , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Cofactor PQQ/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Lesión Pulmonar/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/genética , Lesión Pulmonar/prevención & control , Lesión Pulmonar/tratamiento farmacológico , Humanos , Apoptosis/efectos de los fármacos , Masculino , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/prevención & control , Pulmón/efectos de la radiación , Pulmón/metabolismo , Pulmón/efectos de los fármacos
2.
Nutrients ; 16(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275279

RESUMEN

BACKGROUND: Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. METHODS: Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial (ClinicalTrials.gov. Identifier: NCT06548503; Ethical Committee of the University of Padova (HEC-DSB/12-2023) to evaluate the effect of the intake of a product containing silymarin, pyrroloquinoline quinone sodium salt, and myricetin (referred to as Si.Pi.Mi. for this project) on blood alcohol, ethyl glucuronide (EtG: marker for alcohol consumption) and markers of oxidative stress levels (Reactive Oxygen Species-ROS, Total Antioxidant Capacity-TAC, CoQ10, thiols redox status, 8-isoprostane, NO metabolites, neopterin, and uric acid). The effects of the treatment versus placebo were evaluated acutely and after 1 week of supplementation in blood and/or saliva and urine samples. RESULTS: Si.Pi.Mi intake reduced circulating ethanol after 120 min (-33%). Changes in oxidative stress biomarkers, particularly a TAC (range +9-12%) increase and an 8-isoprostane (marker of lipidic peroxidation) decrease (range -22-27%), were observed too. CONCLUSION: After the administration of Si.Pi.Mi, the data seemed to suggest a better alcohol metabolism and oxidative balance in response to wine intake. Further verification is requested.


Asunto(s)
Biomarcadores , Flavonoides , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Proyectos Piloto , Biomarcadores/sangre , Biomarcadores/orina , Masculino , Adulto , Flavonoides/farmacología , Flavonoides/administración & dosificación , Femenino , Método Simple Ciego , Cofactor PQQ/farmacología , Consumo de Bebidas Alcohólicas , Antioxidantes , Etanol , Persona de Mediana Edad , Vino/análisis
3.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273669

RESUMEN

This study investigates the underlying mechanism through which dietary supplementation of pyrroloquinoline quinone disodium (PQQ) alleviates intestinal inflammation and cell apoptosis in piglets challenged with lipopolysaccharide (LPS). Seventy-two barrows were divided into three groups: control (CTRL), LPS challenged (LPS), and LPS challenged with PQQ supplementation (PQQ + LPS). On d 7, 11, and 14, piglets received intraperitoneal injections of LPS or 0.9% of NaCl (80 µg/kg). After a 4 h interval following the final LPS injection on d 14, blood samples were obtained, and all piglets were euthanized for harvesting jejunal samples. The results showed that dietary supplementation of PQQ improved the damage of intestinal morphology, increased the down-regulated tight junction proteins, and reduced the increase of serum diamine oxidase activity, the intestinal fatty acid binding protein, and TNF-α levels in piglets challenged with LPS (p < 0.05). The proteomics analysis revealed a total of 141 differentially expressed proteins (DEPs), consisting of 64 up-regulated DEPs and 77 down-regulated DEPs in the PQQ + LPS group compared to the LPS group. The KEGG pathway analysis indicated enrichment of the tight junction pathway and the apoptosis pathway (p < 0.05). Compared to the LPS group, the piglets in the PQQ + LPS group had increased levels of Bcl-2 protein, reduced positive apoptosis signals, and a decrease in the abundance of MKK 3/6 and p-p38 proteins (p < 0.05). In conclusion, dietary supplementation of PQQ could alleviate jejunal inflammatory damage and cell apoptosis in piglets challenged with LPS through the MKK3/6-p38 signaling pathway.


Asunto(s)
Apoptosis , Lipopolisacáridos , Cofactor PQQ , Animales , Apoptosis/efectos de los fármacos , Porcinos , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Modelos Animales de Enfermedad , MAP Quinasa Quinasa 3/metabolismo , Suplementos Dietéticos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Proteínas de Uniones Estrechas/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología
4.
Biomolecules ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39199405

RESUMEN

Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.


Asunto(s)
Biopelículas , Pruebas de Sensibilidad Microbiana , Cofactor PQQ , Proteómica , Biopelículas/efectos de los fármacos , Cofactor PQQ/farmacología , Cofactor PQQ/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Simulación por Computador , Hongos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antifúngicos/farmacología , Antifúngicos/química
5.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116128

RESUMEN

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Asunto(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzimología , Methylobacterium extorquens/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Cristalografía por Rayos X , Cofactor PQQ/metabolismo , Cofactor PQQ/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Modelos Moleculares , Lantano/química , Lantano/metabolismo
6.
Chemosphere ; 363: 142975, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084302

RESUMEN

Glucose metabolism plays an important role for formation of normal physiological state of organisms. However, association between altered glucose metabolism and toxicity of 6-PPD quinone (6-PPDQ) remains largely unknown. In 1-100 µg/L 6-PPDQ exposed Caenorhabditis elegans, we observed increased glucose content. After 6-PPDQ exposure (1-100 µg/L), expressions of F47B8.10 and fbp-1 governing gluconeogenesis were increased, and expressions of hxk-1, hxk-3, pfk-1.1, pyk-1, and pyk-2 governing glycolysis were decreased. Under 6-PPDQ exposure condition, glucose content could be changed by RNAi of F47B8.10, hxk-1, and hxk-3, key genes for gluconeogenesis and glycolysis. In 6-PPDQ exposed nematodes, RNAi of daf-16 and aak-2 elevated glucose content, increased expressions of F47B8.10 and/or fbp-1, and decreased expressions of hxk-1, hxk-3, and/or pfk-1.1. Additionally, lifespan and locomotion during aging were increased by RNAi of F47B8.10 and decreased by RNAi of hxk-1 and hxk-3 in 6-PPDQ exposed nematodes. Moreover, after 6-PPDQ exposure, RNAi of F47B8.10 decreased expressions of insulin peptide genes (ins-7 and daf-28) and insulin receptor gene daf-2 and increased expressions of daf-16 and aak-2. In 6-PPDQ exposed nematodes, RNAi of hxk-1 and hxk-3 further increased expressions of ins-7, daf-28, and daf-2 and decreased expressions of daf-16 and aak-2. Our results demonstrated important association between altered glucose metabolism and toxicity of 6-PPDQ in inducing lifespan reduction in organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Glucosa , Insulina , Longevidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animales , Longevidad/efectos de los fármacos , Glucosa/metabolismo , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Cofactor PQQ , Factores de Transcripción Forkhead
7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38908910

RESUMEN

Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.


Asunto(s)
Proteínas Bacterianas , Medios de Cultivo , Cofactor PQQ , Serratia marcescens , Sistemas de Secreción Tipo VI , Concentración de Iones de Hidrógeno , Serratia marcescens/genética , Serratia marcescens/metabolismo , Cofactor PQQ/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Medios de Cultivo/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
8.
J Nutr Health Aging ; 28(8): 100287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908296

RESUMEN

OBJECTIVES: To assess the impact of medium-term supplementation with dihydrogen and pyrroloquinoline quinone (PQQ) on mitochondrial biomarkers, brain metabolism, and cognition in elderly individuals diagnosed with mild cognitive impairment. DESIGN: A parallel-group, randomized, placebo-controlled, double-blind experimental design, maintaining a 1:1 allocation ratio between the experimental group (receiving the dihydrogen-producing minerals and PQQ) and the control group (receiving the placebo) throughout the trial. SETTING AND PARTICIPANTS: Thirty-four elderly individuals with mild cognitive impairment (mean age 71.9 ± 3.8 years; 28 females) voluntarily provided written consent to participate in this trial. Participants were assigned in a double-blind parallel-group design to receive either a dihydrogen-PQQ mixture (Alpha Hope®, CalerieLife, Irvine, CA) or placebo twice daily for a 6-week intervention period. METHODS: The primary endpoint was the change in serum brain-derived neurotrophic factor (BDNF) from baseline to the 6-week follow-up; secondary outcomes included cognitive function indices, specific metabolites in brain tissue, brain oxygenation, and the prevalence and severity of side effects. Interaction effects (time vs. intervention) were evaluated using two-way ANOVA with repeated measures and Friedman's 2-way ANOVA by ranks, for normally distributed data with homogeneous variances and non-homogeneous variances, respectively. RESULTS: Dihydrogen-PQQ resulted in a significant elevation in serum BDNF levels at the six-week follow-up (P = 0.01); conversely, no changes in BDNF levels were observed in the placebo group throughout the study duration (P = 0.27). A non-significant trend in the impact of interventions on BDNF levels was observed (treatment vs. time interaction, P = 0.14), suggesting a tendency for dihydrogen-PQQ to upregulate BDNF levels compared to the placebo. A significant interaction effect was observed for the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) scores in the orientation domain (P = 0.03), indicating the superiority of dihydrogen-PQQ over placebo in enhancing this cognitive aspect. Cerebral oxygenation saturation exhibited a significant increase following the administration of the dihydrogen-PQQ mixture, from 48.4 ± 7.2% at baseline to 52.8 ± 6.6% at 6-week post-administration (P = 0.005). In addition, brain N-acetyl aspartate levels significantly increased at seven out of thirteen locations post-intervention in participants receiving the mixture (P ≤ 0.05). CONCLUSIONS: Despite the limited number of participants included in the study for interpreting clinical parameters, the dihydrogen-PQQ mixture blend shows promise as a potential dietary intervention for enhancing mental orientation and brain metabolism in individuals with age-related mild cognitive decline.


Asunto(s)
Biomarcadores , Factor Neurotrófico Derivado del Encéfalo , Encéfalo , Cognición , Disfunción Cognitiva , Suplementos Dietéticos , Mitocondrias , Cofactor PQQ , Humanos , Femenino , Anciano , Masculino , Método Doble Ciego , Cofactor PQQ/farmacología , Cognición/efectos de los fármacos , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
9.
J Med Invest ; 71(1.2): 23-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735721

RESUMEN

Pyrroloquinoline quinone disodium salt (PQQ) is a red trihydrate crystal that was approved as a new food ingredient by FDA in 2008. Now, it is approved as a food in Japan and the EU. PQQ has redox properties and exerts antioxidant, neuroprotective, and mitochondrial biogenesis effects. The baseline intake level of PQQ is considered to be 20 mg/day. PQQ ingestion lowers blood lipid peroxide levels in humans, suggesting antioxidant activity. In the field of cognitive function, double-blind, placebo-controlled trials have been conducted. Various improvements have been reported regarding general memory, verbal memory, working memory, and attention. Furthermore, a stratified analysis of a population with a wide range of ages revealed unique effects in young people (20-40 years old) that were not observed in older adults (41-65 years old). Specifically, cognitive flexibility and executive speed improved more rapidly in young people at 8 weeks. Co-administration of PQQ and coenzyme Q10 further enhanced these effects. In an open-label trial, PQQ was shown to improve sleep and mood. Additionally, PQQ was found to suppress skin moisture loss and increase PGC-1α expression. Overall, PQQ is a food with various functions, including brain health benefits. J. Med. Invest. 71 : 23-28, February, 2024.


Asunto(s)
Encéfalo , Cognición , Cofactor PQQ , Humanos , Cofactor PQQ/farmacología , Cofactor PQQ/administración & dosificación , Cognición/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
10.
Food Funct ; 15(11): 6134-6146, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767386

RESUMEN

Deoxynivalenol (DON) is a prevalent mycotoxin that primarily contaminates cereal crops and animal feed, posing a significant risk to human and animal health. In recent years, an increasing number of Devosia strains have been identified as DON degradation bacteria, and significant efforts have been made to explore their potential applications in the food and animal feed industries. However, the characteristics and mechanisms of DON degradation in Devosia strains are still unclear. In this study, we identified a novel DON degrading bacterium, Devosia sp. D-G15 (D-G15), from soil samples. The major degradation products of DON in D-G15 were 3-keto-DON, 3-epi-DON and an unidentified product, compound C. The cell viability assay showed that the DON degradation product of D-G15 revealed significantly reduced toxicity to HEK293T cells compared to DON. Three enzymes for DON degradation were further identified, with G15-DDH converting DON to 3-keto-DON and G15-AKR1/G15-AKR6 reducing 3-keto-DON to 3-epi-DON. Interestingly, genome comparison of Devosia strains showed that the pyrroloquinoline quinone (PQQ) synthesis gene cluster is a unique feature of DON degradation strains. Subsequently, adding PQQ to the cultural media of Devosia strains without PQQ synthesis genes endowed them with DON degradation activity. Furthermore, a novel DON-degrading enzyme G13-DDH (<30% homology with known DON dehydrogenase) was identified from a Devosia strain that lacks PQQ synthesis ability. In summary, a novel DON degrading Devosia strain and its key enzymes were identified, and PQQ production was found as a distinct feature among Devosia strains with DON degradation activity, which is important for developing Devosia strain-based technology in DON detoxification.


Asunto(s)
Cofactor PQQ , Tricotecenos , Tricotecenos/metabolismo , Cofactor PQQ/metabolismo , Humanos , Células HEK293 , Hyphomicrobiaceae/metabolismo , Hyphomicrobiaceae/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA