Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.360
1.
Mol Med Rep ; 30(1)2024 07.
Article En | MEDLINE | ID: mdl-38695254

As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas­related diseases.


Pancreas , Pancreatic Diseases , Pancreatic Stellate Cells , Humans , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Pancreas/metabolism , Pancreas/pathology , Pancreas/cytology , Pancreatic Diseases/pathology , Pancreatic Diseases/metabolism , Animals , Extracellular Matrix/metabolism , Cell Differentiation , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism
2.
Pak J Pharm Sci ; 37(2): 307-314, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767097

Long-lasting hyperglycemia can potentially cause damage to organs such as the kidneys, liver and pancreas. Glimepiride (GLIM), as a drug of choice in the treatment of diabetes mellitus (DM), has the risk of decreasing the functioning of organs such as the kidneys, liver and pancreas. Black rice bran ethanol extract (EEBRB) with antioxidant content has been shown to protect the kidney, liver and pancreas organs. The aim of this study was to establish the effect of EEBRB on lowering fasting blood glucose (FBG) and protecting several organs after GLIM administration in alloxan (ALX)-induced hyperglycemic rats. A total of 20 rats were divided into 4 groups and treated for 21 days treatments using following preparations: normal control (NC), diabetic group (DC), GLIM 1 mg/ kgBW and combination of glimepiride 1mg/kgBW and EEBRB 50 mg/KgBW (GLBR). The results showed that the GLBR was able to lower blood glucose levels back to normal (<126 mg/dL) and protect kidney, liver and pancreas cells by increasing the amount in normal cells.


Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Kidney , Liver , Oryza , Pancreas , Plant Extracts , Sulfonylurea Compounds , Animals , Sulfonylurea Compounds/pharmacology , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Kidney/drug effects , Kidney/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Oryza/chemistry , Liver/drug effects , Liver/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Male , Rats , Ethanol/chemistry , Rats, Wistar
3.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769308

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Fibrosis , Mitochondria , Pancreatitis-Associated Proteins , Pancreatitis , Receptors, CXCR4 , Animals , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Pancreatitis/pathology , Pancreatitis/metabolism , Mice , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Mice, Inbred C57BL , Cyclams/pharmacology , Male , Mice, Knockout , Benzylamines/pharmacology , Chemokine CXCL12/metabolism , Cell Proliferation , Signal Transduction , Autophagy , Pancreas/pathology , Pancreas/metabolism , Cell Death
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731942

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Acinar Cells , Carcinoma, Pancreatic Ductal , Metaplasia , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Reactive Oxygen Species , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mice , Reactive Oxygen Species/metabolism , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Metaplasia/metabolism , Metaplasia/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Mice, Transgenic , Chemokines, CC/metabolism , Chemokines, CC/genetics , Macrophage Inflammatory Proteins/metabolism , Macrophage Inflammatory Proteins/genetics , Pancreas/metabolism , Pancreas/pathology
5.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698325

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Apoptosis , Caspase 3 , Lipopolysaccharides , Pancreatitis , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid , Vitamin B 6 , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/chemically induced , Signal Transduction/drug effects , Apoptosis/drug effects , Caspase 3/metabolism , Rats , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Male , Amylases/blood , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Acute Disease , bcl-2-Associated X Protein/metabolism , Lipase/metabolism , Lipase/blood , Proto-Oncogene Proteins c-bcl-2/metabolism
6.
J Oleo Sci ; 73(5): 717-727, 2024.
Article En | MEDLINE | ID: mdl-38692894

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
8.
Am J Surg Pathol ; 48(5): 511-520, 2024 May 01.
Article En | MEDLINE | ID: mdl-38567813

The diagnosis of solid pseudopapillary neoplasm of the pancreas (SPN) can be challenging due to potential confusion with other pancreatic neoplasms, particularly pancreatic neuroendocrine tumors (NETs), using current pathological diagnostic markers. We conducted a comprehensive analysis of bulk RNA sequencing data from SPNs, NETs, and normal pancreas, followed by experimental validation. This analysis revealed an increased accumulation of peroxisomes in SPNs. Moreover, we observed significant upregulation of the peroxisome marker ABCD1 in both primary and metastatic SPN samples compared with normal pancreas and NETs. To further investigate the potential utility of ABCD1 as a diagnostic marker for SPN via immunohistochemistry staining, we conducted verification in a large-scale patient cohort with pancreatic tumors, including 127 SPN (111 primary, 16 metastatic samples), 108 NET (98 nonfunctional pancreatic neuroendocrine tumor, NF-NET, and 10 functional pancreatic neuroendocrine tumor, F-NET), 9 acinar cell carcinoma (ACC), 3 pancreatoblastoma (PB), 54 pancreatic ductal adenocarcinoma (PDAC), 20 pancreatic serous cystadenoma (SCA), 19 pancreatic mucinous cystadenoma (MCA), 12 pancreatic ductal intraepithelial neoplasia (PanIN) and 5 intraductal papillary mucinous neoplasm (IPMN) samples. Our results indicate that ABCD1 holds promise as an easily applicable diagnostic marker with exceptional efficacy (AUC=0.999, sensitivity=99.10%, specificity=100%) for differentiating SPN from NET and other pancreatic neoplasms through immunohistochemical staining.


Carcinoma, Pancreatic Ductal , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreas/pathology , Carcinoma, Pancreatic Ductal/pathology , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pancreatic Ducts/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , ATP Binding Cassette Transporter, Subfamily D, Member 1
9.
Medicine (Baltimore) ; 103(17): e37922, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669380

RATIONALE: Immunoglobulin G4-related disease (IgG4-RD) can involve various organs throughout the body, primarily manifesting as endocrine dysfunction, visual impairment, jaundice, and limited sexual function. IgG4-related autoimmune pancreatitis is triggered by autoimmune reactions and characterized by structural changes in the pancreas and pancreatic ducts. The disease mainly affects middle-aged and elderly males, typically presenting as progressive painless jaundice and misdiagnosed as cholangiocarcinoma or pancreatic cancer. PATIENT CONCERNS: This study reports a 54-year-old male who consulted with different institutions multiple times due to diabetes, pancreatitis, elevated liver enzymes, and jaundice. DIAGNOSES: Magnetic resonance imaging revealed swollen head of the pancreas and atrophic tail. Liver and pancreatic tissue pathology showed IgG4 plasma cell infiltration, while liver biopsy indicated interface hepatitis, liver fibrosis, and pseudolobule formation, with no evidence of bile duct damage. INTERVENTIONS: Following hormone therapy, the patient's serum IgG4 levels and liver enzyme levels returned to normal. OUTCOMES: The disease relapsed 2 years after maintaining hormone therapy, and the patient underwent additional hormone-induced remission therapy combined with azathioprine. LESSONS: The purpose of this research report is to enhance the awareness and understanding of IgG4-RD, emphasizing the necessity for personalized treatment strategies that take into account its recurrence, associations, and imaging features. This report provides valuable insights and guidance for clinicians in managing and diagnosing patients with IgG4-RD.


Autoimmune Pancreatitis , Cholangitis, Sclerosing , Immunoglobulin G4-Related Disease , Humans , Male , Middle Aged , Cholangitis, Sclerosing/diagnosis , Cholangitis, Sclerosing/immunology , Autoimmune Pancreatitis/diagnosis , Autoimmune Pancreatitis/immunology , Autoimmune Pancreatitis/drug therapy , Immunoglobulin G4-Related Disease/diagnosis , Immunoglobulin G4-Related Disease/complications , Immunoglobulin G/blood , Immunoglobulin G/immunology , Pancreas/pathology , Pancreas/diagnostic imaging
10.
Int Immunopharmacol ; 133: 112081, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652963

Acute pancreatitis (AP) is a prevalent gastrointestinal disorder. The immune response plays a crucial role in AP progression. However, the impact of immune regulatory checkpoint PD-L1 on severe acute pancreatitis (SAP) remains uncertain. Hence, this study aimed to examine the influence of PD-L1 on SAP. We assessed PD-L1 expression in neutrophils and monocytes obtained from SAP patients. We induced SAP in C57BL/6J mice, PD-L1 gene-deficient mice, and PD-L1 humanized mice using intraperitoneal injections of cerulein plus lipopolysaccharide. Prior to the initial cerulein injection, a PD-L1 inhibitor was administered. Pancreatic tissues were collected for morphological and immunohistochemical evaluation, and serum levels of amylase, lipase, and cytokines were measured. Flow cytometry analysis was performed using peripheral blood cells. The expression of PD-L1 in neutrophils and monocytes was significantly higher in SAP patients compared to healthy individuals. Likewise, the expression of PD-L1 in inflammatory cells in the peripheral blood of SAP-induced C57BL/6J mice was notably higher than in the control group. In mice with PD-L1 deficiency, SAP model exhibited lower pancreatic pathology scores, amylase, lipase, and cytokine levels compared to wild-type mice. PD-L1 deletion resulted in reduced neutrophil apoptosis, leading to an earlier peak in neutrophil apoptosis. Furthermore, it decreased early monocyte apoptosis and diminished the peak of T lymphocyte apoptosis. Within the SAP model, administration of a PD-L1 inhibitor reduced pancreatic pathology scores, amylase, lipase, and cytokine levels in both C57BL/6J mice and PD-L1 humanized mice. These findings suggest that inhibiting PD-L1 expression can alleviate the severity of SAP.


Apoptosis , B7-H1 Antigen , Mice, Inbred C57BL , Neutrophils , Pancreas , Pancreatitis , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Humans , Apoptosis/drug effects , Pancreatitis/immunology , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/pathology , Neutrophils/immunology , Neutrophils/drug effects , Mice , Pancreas/pathology , Pancreas/immunology , Male , Monocytes/immunology , Monocytes/drug effects , Cytokines/metabolism , Disease Models, Animal , Mice, Knockout , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Ceruletide , Middle Aged , Amylases/blood , Lipase/blood
11.
Abdom Radiol (NY) ; 49(5): 1489-1501, 2024 May.
Article En | MEDLINE | ID: mdl-38580790

PURPOSE: Magnetic resonance imaging has been recommended as a primary imaging modality among high-risk individuals undergoing screening for pancreatic cancer. We aimed to delineate potential precursor lesions for pancreatic cancer on MR imaging. METHODS: We conducted a case-control study at Kaiser Permanente Southern California (2008-2018) among patients that developed pancreatic cancer who had pre-diagnostic MRI examinations obtained 2-36 months prior to cancer diagnosis (cases) matched 1:2 by age, gender, race/ethnicity, contrast status and year of scan (controls). Patients with history of acute/chronic pancreatitis or prior pancreatic surgery were excluded. Images underwent blind review with assessment of a priori defined series of parenchymal and ductal features. We performed logistic regression to assess the associations between individual factors and pancreatic cancer. We further assessed the interaction among features as well as performed a sensitivity analysis stratifying based on specific time-windows (2-3 months, 4-12 months, 13-36 months prior to cancer diagnosis). RESULTS: We identified 141 cases (37.9% stage I-II, 2.1% III, 31.4% IV, 28.6% unknown) and 292 matched controls. A solid mass was noted in 24 (17%) of the pre-diagnostic MRI scans. Compared to controls, pre-diagnostic images from cancer cases more frequently exhibited the following ductal findings: main duct dilatation (51.4% vs 14.3%, OR [95% CI]: 7.75 [4.19-15.44], focal pancreatic duct stricture with distal (upstream) dilatation (43.6% vs 5.6%, OR 12.71 [6.02-30.89], irregularity (42.1% vs 6.0%, OR 9.73 [4.91-21.43]), focal pancreatic side branch dilation (13.6% vs1.6%, OR 11.57 [3.38-61.32]) as well as parenchymal features: atrophy (57.9% vs 27.4%, OR 46.4 [2.71-8.28], focal area of signal abnormality (39.3% vs 4.8%, OR 15.69 [6.72-44,78]), all p < 0.001). CONCLUSION: In addition to potential missed lesions, we have identified a series of ductal and parenchymal features on MRI that are associated with increased odds of developing pancreatic cancer.


Magnetic Resonance Imaging , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Female , Case-Control Studies , Male , Magnetic Resonance Imaging/methods , Middle Aged , Aged , California , Early Detection of Cancer , Pancreas/diagnostic imaging , Pancreas/pathology , Retrospective Studies , Precancerous Conditions/diagnostic imaging
12.
J Endocrinol ; 262(1)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38642584

Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.


Adipose Tissue , Diabetes Mellitus, Type 2 , Obesity , Pancreas , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Pancreas/metabolism , Pancreas/pathology , Lipid Metabolism , Diabetes Mellitus, Type 1/metabolism , Insulin Resistance/physiology , Animals
13.
Drugs ; 84(4): 375-384, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573485

The quest for medications to reduce intra-pancreatic fat deposition is now quarter a century old. While no specific medication has been approved for the treatment of fatty change of the pancreas, drug repurposing shows promise in reducing the burden of the most common disorder of the pancreas. This leading article outlines the 12 classes of medications that have been investigated to date with a view to reducing intra-pancreatic fat deposition. Information is presented hierarchically-from preclinical studies to retrospective findings in humans to prospective interventional studies to randomised controlled trials. This lays the grounds for shepherding the most propitious drugs into medical practice through well-designed basic science studies and adequately powered randomised controlled trials.


Pancreas , Humans , Pancreas/pathology , Drug Repositioning , Animals , Pancreatic Diseases/drug therapy , Adipose Tissue/drug effects , Adipose Tissue/metabolism
14.
Discov Med ; 36(183): 730-738, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665022

BACKGROUND: Current research on radiomics for diagnosing and prognosing acute pancreatitis predominantly revolves around model development and testing. However, there is a notable absence of ongoing interpretation and analysis regarding the physical significance of these models and features. Additionally, there is a lack of extensive exploration of visual information within the images. This limitation hinders the broad applicability of radiomics findings. This study aims to address this gap by specifically analyzing filtered Computed Tomography (CT) image features of acute pancreatitis to identify meaningful visual markers in the pancreas and peripancreatic area. METHODS: Numerous filtered CT images were obtained through pyradiomics. The window width and window level were fine-tuned to emphasize the pancreas and peripancreatic regions. Subsequently, the LightGBM algorithm was employed to conduct an embedded feature screening, followed by statistical analysis to identify features with statistical significance (p-value < 0.01). Within the purview of the study, for each filtering method, features of high importance to the preceding prediction model were incorporated into the analysis. The image visual markers were then systematically sought in reverse, and their medical interpretation was undertaken to a certain extent. RESULTS: In Laplacian of Gaussian filtered images within the pancreatic region, severe acute pancreatitis (SAP) exhibited fewer small areas with repetitive greyscale patterns. Conversely, in the peripancreatic region, SAP displayed greater irregularity in both area size and the distribution of greyscale levels. In logarithmic images, SAP demonstrated reduced low greyscale connectivity in the pancreatic region, while showcasing a higher average variation in greyscale between two adjacent pixels in the peripancreatic region. Moreover, in gradient images, SAP presented with decreased repetition of two adjacent pixel greyscales within the pancreatic region, juxtaposed with an increased inhomogeneity in the size of the same greyscale region within the δ range in the peripancreatic region. CONCLUSIONS: Various filtered images convey distinct physical significance and properties. The selection of the appropriate filtered image, contingent upon the characteristics of the Region of Interest (ROI), enables a more comprehensive capture of the heterogeneity of the disease.


Algorithms , Pancreatitis , Tomography, X-Ray Computed , Humans , Pancreatitis/diagnostic imaging , Pancreatitis/diagnosis , Pancreatitis/pathology , Tomography, X-Ray Computed/methods , Acute Disease , Male , Pancreas/diagnostic imaging , Pancreas/pathology , Female , Middle Aged , Radiomics
15.
Sci Rep ; 14(1): 9100, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643275

Diabetes constitutes a major public health problem, with dramatic consequences for patients. Both genetic and environmental factors were shown to contribute to the different forms of the disease. The monogenic forms, found both in humans and in animal models, specially help to decipher the role of key genes in the physiopathology of the disease. Here, we describe the phenotype of early diabetes in a colony of NOD mice, with spontaneous invalidation of Akt2, that we called HYP. The HYP mice were characterised by a strong and chronic hyperglycaemia, beginning around the age of one month, especially in male mice. The phenotype was not the consequence of the acceleration of the autoimmune response, inherent to the NOD background. Interestingly, in HYP mice, we observed hyperinsulinemia before hyperglycaemia occurred. We did not find any difference in the pancreas' architecture of the NOD and HYP mice (islets' size and staining for insulin and glucagon) but we detected a lower insulin content in the pancreas of HYP mice compared to NOD mice. These results give new insights about the role played by Akt2 in glucose homeostasis and argue for the ß cell failure being the primary event in the course of diabetes.


Diabetes Mellitus, Type 1 , Diabetes Mellitus , Hyperglycemia , Islets of Langerhans , Humans , Male , Mice , Animals , Mice, Inbred NOD , Islets of Langerhans/pathology , Diabetes Mellitus/pathology , Pancreas/pathology , Insulin , Hyperglycemia/genetics , Hyperglycemia/pathology , Diabetes Mellitus, Type 1/pathology , Proto-Oncogene Proteins c-akt/genetics
16.
Toxicol Appl Pharmacol ; 485: 116920, 2024 Apr.
Article En | MEDLINE | ID: mdl-38582373

Asparaginase-associated pancreatitis (AAP) is a severe and potentially life-threatening drug-induced pancreas targeted toxicity in the combined chemotherapy of acute lymphoblastic leukemia among children and adolescents. The toxicological mechanism of AAP is not yet clear, and there are no effective preventive and treatment measures available clinically. Fibroblast growth factor 21 (FGF21) is a secretory hormone that regulates lipid, glucose, and energy metabolism balance. Acinar tissue is the main source of pancreatic FGF21 protein and plays an important role in maintaining pancreatic metabolic balance. In this study, we found that the decrease of FGF21 in pancreas is closely related to AAP. Pegaspargase (1 IU/g) induces widespread edema and inflammatory infiltration in the pancreas of rats/mice. The specific expression of FGF21 in the acinar tissue of AAP rats was significantly downregulated. Asparaginase caused dysregulation of the ATF4/ATF3/FGF21 axis in acinar tissue or cells, and thus mediated the decrease of FGF21. It greatly activated ATF3 in the acinar, which competed with ATF4 for the Fgf21 promoter, thereby inhibiting the expression of FGF21. Pharmacological replacement of FGF21 (1 mg/kg) or PERK inhibitors (GSK2656157, 25 mg/kg) can significantly mitigate the pancreatic tissue damage and reduce markers of inflammation associated with AAP, representing potential strategies for the prevention and treatment of AAP.


Asparaginase , Fibroblast Growth Factors , Pancreas , Pancreatitis , eIF-2 Kinase , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Asparaginase/toxicity , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Male , Rats , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Mice , Rats, Sprague-Dawley , Polyethylene Glycols/toxicity , Antineoplastic Agents/toxicity , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mice, Inbred C57BL
17.
Sci Rep ; 14(1): 9548, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664508

Ferroptosis is closely associated with inflammatory diseases, including acute pancreatitis (AP); however, the involvement of ferroptosis in hypertriglyceridemic pancreatitis (HTGP) remains unclear. In the present study, we aimed to explore the relationship between lipid metabolism and ferroptosis in HTGP and the alleviating effect of liproxstatin-1 (Lip-1) in vivo. This study represents the first exploration of lipid metabolism and endoplasmic reticulum stress (ERS) in HTGP, targeting ferroptosis as a key factor in HTGP. Hypertriglyceridemia (HTG) was induced under high-fat diet conditions. Cerulein was then injected to establish AP and HTGP models. Lip-1, a specific ferroptosis inhibitor, was administered before the induction of AP and HTGP in rats, respectively. Serum triglyceride, amylase, inflammatory factors, pathological and ultrastructural structures, lipid peroxidation, and iron overload indicators related to ferroptosis were tested. Moreover, the interaction between ferroptosis and ERS was assessed. We found HTG can exacerbate the development of AP, with an increased inflammatory response and intensified ferroptosis process. Lip-1 treatment can attenuate pancreatic injury by inhibiting ferroptosis through lipid metabolism and further resisting activations of ERS-related proteins. Totally, our results proved lipid metabolism can promote ferroptosis in HTGP by regulating ACSL4/LPCAT3 protein levels. Additionally, ERS may participate in ferroptosis via the Bip/p-EIF2α/CHOP pathway, followed by the alleviating effect of Lip-1 in the rat model.


Endoplasmic Reticulum Stress , Ferroptosis , Hypertriglyceridemia , Lipid Metabolism , Pancreatitis , Quinoxalines , Spiro Compounds , Animals , Ferroptosis/drug effects , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/metabolism , Rats , Endoplasmic Reticulum Stress/drug effects , Male , Lipid Metabolism/drug effects , Cyclohexylamines/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Lipid Peroxidation/drug effects , Diet, High-Fat/adverse effects , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Triglycerides/blood , Triglycerides/metabolism
18.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38681131

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Ceruletide , Disease Models, Animal , Gene Expression Profiling , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Transgenic , Pancreas , Pancreatitis , Transcription Factors , Animals , Ceruletide/toxicity , Mice , Pancreatitis/genetics , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/metabolism , Gene Expression Profiling/methods , Pancreas/pathology , Pancreas/metabolism , Humans , Transcriptome , Male , Signal Transduction , Acinar Cells/metabolism , Acinar Cells/pathology
19.
World J Gastroenterol ; 30(15): 2091-2095, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38681985

In this editorial we comment on the article by Jaber et al. Autoimmune pancreatitis (AIP) represents a distinct form of pancreatitis, categorized into AIP-1 and AIP-2, characterized by obstructive jaundice, lymphoplasmacytic infiltrate, and fibrosis. AIP-1, associated with elevated immunoglobulin G4 (IgG4) levels, exhibits higher relapse rates, affecting older males, while AIP-2 is less common and linked to inflammatory bowel disease. AIP is considered a manifestation of IgG4-related systemic disease, sharing characteristic histological findings. Steroids are the primary treatment, with emerging biomarkers like interferon alpha and interleukin-33. AIP poses an increased risk of various malignancies, and the association with pancreatic cancer is debated. Surgery is reserved for severe cases, necessitating careful evaluation due to diagnostic challenges. AIP patients may have concurrent PanINs but display favorable long-term outcomes compared to pancreatic cancer patients. Thorough diagnostic assessment, including biopsy and steroid response, is crucial for informed surgical decisions in AIP.


Autoimmune Pancreatitis , Immunoglobulin G , Pancreatic Neoplasms , Humans , Autoimmune Pancreatitis/diagnosis , Autoimmune Pancreatitis/immunology , Autoimmune Pancreatitis/therapy , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Pancreas/pathology , Pancreas/immunology , Pancreas/surgery , Biomarkers/blood , Biopsy , Male , Steroids/therapeutic use , Treatment Outcome
20.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665015

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
...