Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062780

RESUMEN

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Asunto(s)
COVID-19 , Pangolines , SARS-CoV-2 , SARS-CoV-2/patogenicidad , Animales , COVID-19/virología , COVID-19/transmisión , Pangolines/virología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Biología Computacional/métodos , Fosfoproteínas
2.
Sci Rep ; 14(1): 13131, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849460

RESUMEN

The white-bellied pangolin is subject to intense trafficking, feeding both local and international trade networks. In order to assess its population genetics and trace its domestic trade, we genotyped 562 pangolins from local to large bushmeat markets in western central Africa. We show that the two lineages described from the study region (WCA and Gab) were overlapping in ranges, with limited introgression in southern Cameroon. There was a lack of genetic differentiation across WCA and a significant signature of isolation-by-distance possibly due to unsuspected dispersal capacities involving a Wahlund effect. We detected a c. 74.1-82.5% decline in the effective population size of WCA during the Middle Holocene. Private allele frequency tracing approach indicated up to 600 km sourcing distance by large urban markets from Cameroon, including Equatorial Guinea. The 20 species-specific microsatellite loci provided individual-level genotyping resolution and should be considered as valuable resources for future forensic applications. Because admixture was detected between lineages, we recommend a multi-locus approach for tracing the pangolin trade. The Yaoundé market was the main hub of the trade in the region, and thus should receive specific monitoring to mitigate pangolins' domestic trafficking. Our study also highlighted the weak implementation of CITES regulations at European borders.


Asunto(s)
Repeticiones de Microsatélite , Pangolines , Animales , Pangolines/genética , África Central , Repeticiones de Microsatélite/genética , Genética de Población , Frecuencia de los Genes , Comercio , Genotipo , Camerún , Variación Genética
3.
Anat Histol Embryol ; 53(4): e13084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944690

RESUMEN

The Temminck's pangolin (Smutsia temminckii) is one of eight pangolin species worldwide and the only pangolin present in southern Africa. Historically, pangolins have not been able to reproduce successfully in captivity and this may be in part due to the lack of knowledge and understanding with regards to the pangolin reproductive system (anatomy, physiology, biology) in all eight species. This original study describes the gross anatomy of the male Temminck's pangolin from three adult individuals investigated. The male Temminck's pangolin presented a short, conical penis with ascrotal (internal) testes, similar to many other myrmecophagous mammals such as the aardvark (Orycteropus sp.) and anteaters (suborder: Vermilingua). However, the orientation of the penis of the Temminck's pangolin differed in that it was oriented cranioventrally, in contrast to the caudal orientation of the giant anteater. The testes were found to be bilaterally flattened with an elongate oval shape, similar to the aardvark. The specific characteristics of the reproductive tract of the male Temminck's pangolins are thought to be adaptations to their peculiar lifestyle as the male portrays characteristics that indicate adaptation to a lower basal metabolic rate and body temperature as well as to their defensive mechanism of rolling up into a ball. Our study suggests the male Temminck's pangolin reproductive anatomy is most similar and comparable to the Xenarthrans and the aardvark that display the same fossorial activities as pangolins, and the male morphology is not comparable to the phylogenetically closely-related Carnivora.


Asunto(s)
Pangolines , Pene , Testículo , Animales , Masculino , Testículo/anatomía & histología , Testículo/fisiología , Pangolines/anatomía & histología , Pangolines/fisiología , Pene/anatomía & histología , Genitales Masculinos/anatomía & histología , Reproducción/fisiología
4.
J Mol Evol ; 92(3): 329-337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777906

RESUMEN

The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif. Early during the pandemic, it was proposed that the SARS-CoV-2 Receptor-Binding Domain was acquired via recombination with a pangolin infecting coronavirus. This proposal was challenged by an alternative explanation that suggested that the Receptor-Binding Domain from SARS-CoV-2 did not originated via recombination with a coronavirus from a pangolin. Instead, this alternative hypothesis proposed that the Receptor-Binding Motif from the bat coronavirus RaTG13, was acquired via recombination with an unidentified coronavirus. And as a consequence of this event, the Receptor-Binding Domain from the pangolin coronavirus appeared as phylogenetically closer to SARS-CoV-2. Recently, the genomes from coronaviruses from Cambodia (bat_RShST182/200) and Laos (BANAL-20-52/103/247) which are closely related to SARS-CoV-2 were reported. However, no detailed analysis of the evolution of the Receptor-Binding Motif from these coronaviruses was reported. Here we revisit the evolution of the Receptor-Binding Domain and Motif in the light of the novel coronavirus genome sequences. Specifically, we wanted to test whether the above coronaviruses from Cambodia and Laos were the source of the Receptor-Binding Domain from RaTG13. We found that the Receptor-Binding Motif from these coronaviruses is phylogenetically closer to SARS-CoV-2 than to RaTG13. Therefore, the source of the Receptor-Binding Domain from RaTG13 is still unidentified. In accordance with previous studies, our results are consistent with the hypothesis that the Receptor-Binding Motif from SARS-CoV-2 evolved by vertical inheritance from a bat-infecting population of coronaviruses.


Asunto(s)
Evolución Molecular , Filogenia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/química , Secuencias de Aminoácidos , COVID-19/virología , Unión Proteica , Betacoronavirus/genética , Quirópteros/virología , Pangolines/virología , Sitios de Unión , Genoma Viral , Receptores Virales/metabolismo , Receptores Virales/genética , Receptores Virales/química
5.
Zoo Biol ; 43(4): 315-324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685797

RESUMEN

The white-bellied pangolin Phataginus tricuspis (Rafinesque 1821) is a semiarboreal species occurring in tropical sub-Saharan Africa. It is the world's most trafficked African pangolin species based on volumes recorded in seizures. Reintroduction of confiscated live pangolins and ex-situ rearing are being explored worldwide as a conservation action. However, the husbandry of seized animals is challenging as the diet of the white-bellied pangolin is poorly known and little studied. We analyzed the stomach contents of dead white-bellied pangolins from two forest-savanna protected areas. Stomach content samples from 13 white-bellied pangolin specimens contained ~165,000 Arthropoda, mostly Hymenoptera (60.34%) and Blattodea (39.66%). Overall, we identified 39 termite and 105 ant species consumed as prey by pangolins. Individual pangolins examined had fed on a maximum of 31 ant species and 13 termite species. The termite and ant species richness varied significantly across the pangolins' last consumed meal. We recorded 24 ant genera dominated by Crematogaster (relative importance [RI] = 17.28). Out of 18 termite genera recorded, the genus Pseudacanthotermes (RI = 17.21) was the most important prey. Ten ant species were preferentially eaten by white-bellied pangolin, with Crematogaster acis being the most common prey species. Four species of termite were most frequently eaten with Pseudacanthotermes militaris being the most abundant. The mean abundance of ants and termites varied among pangolin individuals. The season did not influence the mean abundance of termites eaten by pangolin individuals. However, ant abundance in stomach contents was significantly higher in the dry season. An improved understanding of pangolin feeding behavior and prey selection may help inform conservation husbandry efforts. For example, nutritional analysis of the food eaten by wild pangolins can guide the development of nutritional diets for captive pangolins.


Asunto(s)
Hormigas , Dieta , Isópteros , Pangolines , Animales , Camerún , Hormigas/fisiología , Isópteros/fisiología , Dieta/veterinaria , Pangolines/fisiología , Ecosistema , Bosques , Contenido Digestivo , Conducta Alimentaria/fisiología
6.
PLoS One ; 19(4): e0299152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568991

RESUMEN

The illegal movement of wildlife poses a public health, conservation and biosecurity threat, however there are currently minimal screening tools available at international ports of entry to intercept wildlife trafficking efforts. This review first aimed to explore the screening tools available or under development for the detection of concealed wildlife contraband at international ports, including postal services, airlines, road border crossings and maritime routes. Where evidence was deficient, publications detailing the use of methods to uncover other illicit substances, such as narcotics, weapons, human trafficking, explosives, radioactive materials, or special nuclear material, were compiled and assessed for their applicability to the detection of wildlife. The first search identified only four citations related to the detection of wildlife, however the secondary search revealed 145 publications, including 59 journal articles and 86 conference proceedings, describing screening tools for non-wildlife illicit contraband detection. The screening tools uncovered were analysed for potential fitness for purpose for wildlife contraband detection, to evaluate the feasibility of their implementation and their ease of use. The deficiencies evident in terms of resource availability and research efforts targeting wildlife trafficking highlights a potentially substantial national and international security threat which must be addressed.


Asunto(s)
Animales Salvajes , Pangolines , Animales , Humanos , Comercio de Vida Silvestre , Salud Pública , Servicios Postales
7.
PLoS One ; 19(4): e0301195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574109

RESUMEN

Understanding the evolution of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and its relationship to other coronaviruses in the wild is crucial for preventing future virus outbreaks. While the origin of the SARS-CoV-2 pandemic remains uncertain, mounting evidence suggests the direct involvement of the bat and pangolin coronaviruses in the evolution of the SARS-CoV-2 genome. To unravel the early days of a probable zoonotic spillover event, we analyzed genomic data from various coronavirus strains from both human and wild hosts. Bayesian phylogenetic analysis was performed using multiple datasets, using strict and relaxed clock evolutionary models to estimate the occurrence times of key speciation, gene transfer, and recombination events affecting the evolution of SARS-CoV-2 and its closest relatives. We found strong evidence supporting the presence of temporal structure in datasets containing SARS-CoV-2 variants, enabling us to estimate the time of SARS-CoV-2 zoonotic spillover between August and early October 2019. In contrast, datasets without SARS-CoV-2 variants provided mixed results in terms of temporal structure. However, they allowed us to establish that the presence of a statistically robust clade in the phylogenies of gene S and its receptor-binding (RBD) domain, including two bat (BANAL) and two Guangdong pangolin coronaviruses (CoVs), is due to the horizontal gene transfer of this gene from the bat CoV to the pangolin CoV that occurred in the middle of 2018. Importantly, this clade is closely located to SARS-CoV-2 in both phylogenies. This phylogenetic proximity had been explained by an RBD gene transfer from the Guangdong pangolin CoV to a very recent ancestor of SARS-CoV-2 in some earlier works in the field before the BANAL coronaviruses were discovered. Overall, our study provides valuable insights into the timeline and evolutionary dynamics of the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2/genética , Filogenia , Pangolines/genética , COVID-19/epidemiología , Teorema de Bayes , Zoonosis/epidemiología
8.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478297

RESUMEN

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Transgénicos , Pangolines , SARS-CoV-2 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , COVID-19/virología , Pangolines/virología , Ratones , Replicación Viral , Pulmón/virología , Pulmón/patología , Chlorocebus aethiops , Células Vero
9.
J Med Virol ; 96(3): e29557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506190

RESUMEN

A genome, composed of a precisely ordered sequence of four nucleotides (ATCG), encompasses a multitude of specific genome features like AAA motif. Mutations occurring within a genome disrupt the sequential order and composition of these features, thereby influencing the evolutionary trajectories and yielding variants. The evolutionary relatedness between a variant and its ancestor can be estimated by assessing evolutionary distances across a spectrum of genome features. This study develops a novel, alignment-free algorithm that considers both the sequential order and composition of genome features, enabling computation of the Fréchet distance (Fr) across multiple genome features to quantify the evolutionary status of a variant. Integrating this algorithm with an artificial recurrent neural network (RNN) reveals the quantitative evolutionary trajectory and origin of SARS-CoV-2, a puzzle unsolved by alignment-based phylogenetics. The RNN generates the evolutionary trajectory from Fr data at two levels: genome sequence mutations and organism variants. At the genome sequence level, SARS-CoV-2 evolutionarily shortens its genome to enhance its infectious capacity. Mutating signature features, such as TTA and GCT, increases its infectious potential and drives its evolution. At the organism level, variants mutating a single biomarker possess low infectious potential. However, mutating multiple markers dramatically increases their infectious capacity, propelling the COVID-19 pandemic. SARS-CoV-2 likely originates from mink coronavirus variants, with its origin trajectory traced as follows: mink, cat, tiger, mouse, hamster, dog, lion, gorilla, leopard, bat, and pangolin. Together, mutating multiple signature features and biomarkers delineates the evolutionary trajectory of mink-origin SARS-CoV-2, leading to the COVID-19 pandemic.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Perros , Ratones , SARS-CoV-2/genética , COVID-19/genética , Pandemias , Visón/genética , Genoma Viral , Pangolines , Inteligencia Artificial , Filogenia
10.
Sci Rep ; 14(1): 7564, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555376

RESUMEN

Climate change is among the greatest drivers of biodiversity loss, threatening up to 15-30% of described species by the end of the twenty-first century. We estimated the current suitable habitat and forecasted future distribution ranges of Indian pangolin (Manis crassicaudata) under climate change scenarios. We collected occurrence records of Indian pangolin using burrow counts, remote camera records and previously published literature in Pakistan during 2021-2023. We downloaded bioclimatic data for current (1970-2000) and future (2041-2060, 2061-2080, 2081-2100) climate scenarios from the WorldClim database using the Hadley Global Environment Model (HadGEM3-GC31-LL). We used MaxEnt software to predict current and future distributions of Indian pangolin, then computed the amount of habitat lost, gained, and unchanged across periods. We obtained 560 Indian pangolin occurrences overall, 175 during the study, and 385 from our literature search. Model accuracy was very good (AUC = 0.885, TSS = 0.695), and jackknife tests of variable importance showed that the contribution of annual mean temperature (bio1) was greatest (33.4%), followed by the mean temperature of the coldest quarter (bio-12, 29.3%), temperature seasonality (bio 4, 25.9%), and precipitation seasonality (bio 15, 11.5%). The maxent model predicted that during the current time period (1970-2000) highly suitable habitat for Indian pangolin was (7270 km2, 2.2%), followed by moderately suitable (12,418 km2, 3.7%), less suitable (49,846 km2, 14.8%), and unsuitable habitat (268,355 km2, 79.4%). Highly suitable habitat decreased in the western part of the study area under most SSPs and in the central parts it declined under all SSPs and in future time periods. The predicted loss in the suitable habitat of the Indian pangolin was greatest (26.97%) under SSP 585 followed by SSP 126 (23.67%) during the time 2061-2080. The gain in suitable habitat of Indian pangolin was less than that of losses on average which ranged between 1.91 and 13.11% under all SSPs during all time periods. While the stable habitat of the Indian pangolin ranged between 64.60 and 83.85% under all SSPs during all time periods. Our study provides the current and future habitat ranges of Indian pangolin in the face of a changing climate. The findings of our study could be helpful for policymakers to set up conservation strategies for Indian pangolin in Pakistan.


Asunto(s)
Cambio Climático , Pangolines , Animales , Ecosistema , Modelos Teóricos , Biodiversidad
11.
Nat Commun ; 15(1): 1048, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316817

RESUMEN

We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Pangolines , Animales , Femenino , Humanos , Ratones , China , Quirópteros , Citocinas , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Ratones Transgénicos , Pangolines/virología
12.
Parasitol Res ; 123(2): 137, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376760

RESUMEN

Pangolins are susceptible to a variety of gastrointestinal nematodes due to their burrowing lifestyle and feeding habits, and few parasitic nematodes have been reported. Here, a Chinese pangolin with old wounds on its leg and tail was rescued from the Heyuan City, Guangdong Province. The cox1 and SSU rRNA of the worms from the intestine of the Chinese pangolin had the highest sequence identity of 89.58% and 97.95% to the species in the infraorder Spiruromorpha. The complete mitogenome of the worm was further assembled by next-generation sequencing, with a size of 13,708 bp and a GC content of 25.6%. The worm mitogenome had the highest sequence identity of 78.56% to that of Spirocerca lupi, sharing the same gene arrangement with S. lupi and some species in other families under Spiruromorpha. However, the mitogenome between the worm and S. lupi showed differences in codon usage of PCGs, sequences of NCR, and tRNA secondary structures. Phylogenetic analysis showed that the worm mitogenome was clustered with S. lupi in the family Thelaziidae to form a separate branch. However, it is still difficult to identify the worm in the family Thelaziidae because the species in the family Thelaziidae are confused, specifically S. lupi and Thelazia callipaeda in the family Thelaziidae were separated and grouped with species from other families. Thus, the parasitic nematode from the Chinese pangolin may be a novel species in Spiruromorpha and closely related to S. lupi. This study enriches the data on gastrointestinal nematodes in the Chinese pangolin.


Asunto(s)
Genoma Mitocondrial , Espirúridos , Thelazioidea , Humanos , Animales , Pangolines , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
15.
BMC Vet Res ; 20(1): 31, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267947

RESUMEN

BACKGROUND: Hemangiomas are a relatively common type of tumor in humans and animals. Various subtypes of hemangiomas have been described in the literature. The classification methods for hemangiomas differ between human and veterinary medicine, and the basis for tumor classification can be found in the literature. CASE PRESENTATION: This study describes a tumor in the subcutaneous tissue of the right dorsum of an artificially rescued juvenile Chinese pangolin. Computed tomography (CT) examination yielded the preliminary diagnosis of a vascular malformation, and surgery was performed to resect the tumor. Histopathological examination showed that the tumor mainly was consisted of adipose tissue, capillaries, and spindle cells in the fibrous stroma. Immunohistochemistry showed the positive expression of CD31, CD34, α-SMA, GLUT1 and WT-1 in the tumor tissue, and the tumor was eventually diagnosed as an infantile haemangioma. CONCLUSION: The final diagnosis of infantile hemangioma was depended on the histopathological immunohistochemical and CT examination of the neoplastic tissue. This is the first report of infantile hemangioma in a critically endangered species Chinese pangolin.


Asunto(s)
Hemangioma , Pangolines , Animales , Humanos , Hemangioma/diagnóstico por imagen , Hemangioma/veterinaria , Tejido Adiposo , Especies en Peligro de Extinción
16.
Sci Rep ; 14(1): 910, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195813

RESUMEN

Protection of the Critically Endangered East Asian Pangolin species is hampered by the vulnerability of captive individuals to infection. Studies have previously shown the pangolin to have a unique pseudogenisation of many immunity genes (including IFNE, IFIH1, cGAS, STING, TLR5, and TLR11), and we suspected that these losses could account for this vulnerability. Here we used RNA-Seq data to show the effect of these gene losses on the transcriptional response to a viral skin infection in a deceased pangolin. This virus is very closely related to the one causing the current COVID-19 pandemic in the human population (SARS-CoV2), and we found the most upregulated pathway was the same one previously identified in the lungs of SARS-CoV2-infected humans. As predicted, we found that the pathways downstream of the lost genes were not upregulated. For example, the pseudogenised interferon epsilon (IFNE) is known to be particularly important in epithelial immunity, and we show that interferon-related responses were not upregulated in the infected pangolin skin. We suggest that the pangolin's innate gene pseudogenisation is indeed likely to be responsible for the animal's vulnerability to infection.


Asunto(s)
Pandemias , Pangolines , Animales , Humanos , ARN Viral , RNA-Seq , Especies en Peligro de Extinción , Interferones
17.
Sci Rep ; 14(1): 541, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177346

RESUMEN

SARS-CoV-2 can infect human cells through the recognition of the human angiotensin-converting enzyme 2 receptor. This affinity is given by six amino acid residues located in the variable loop of the receptor binding domain (RBD) within the Spike protein. Genetic recombination involving bat and pangolin Sarbecoviruses, and natural selection have been proposed as possible explanations for the acquisition of the variable loop and these amino acid residues. In this study we employed Bayesian phylogenetics to jointly reconstruct the phylogeny of the RBD among human, bat and pangolin Sarbecoviruses and detect recombination events affecting this region of the genome. A recombination event involving RaTG13, the closest relative of SARS-CoV-2 that lacks five of the six residues, and an unsampled Sarbecovirus lineage was detected. This result suggests that the variable loop of the RBD didn't have a recombinant origin and the key amino acid residues were likely present in the common ancestor of SARS-CoV-2 and RaTG13, with the latter losing five of them probably as the result of recombination.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2/genética , Filogenia , Pangolines , Teorema de Bayes , Recombinación Genética , Aminoácidos/genética
18.
Mol Biol Rep ; 51(1): 136, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236328

RESUMEN

BACKGROUND: Captive breeding programs play a vital role in conservation of threatened species, necessitating an understanding of genetic diversity among captive individuals to ensure long-term genetic viability, appropriate mate selection, and successful reintroduction to native habitats. METHODS AND RESULTS: We did not observe any recent genetic bottleneck, and population showed moderate genetic diversity. The estimated effective population size, representing individuals capable of contributing genetically to future generations, was estimated as 18.6 individuals (11.4-35.1 at 95% CI). Based on the genetic make-up and allelic diversity, we found seventeen pangolins (11 females and 6 males) were genetically unrelated and relatively more potent than others. CONCLUSION: In this study, we evaluated the captive breeding program of the Indian pangolin population at the Pangolin Conservation Breeding Centre in Nandankanan Zoological Park, Bhubaneswar, Odisha. We highlight the significance of genetic monitoring within the captive population of Indian pangolin for preserving genetic diversity and ensuring the long-term survival of the species. We established the genetic profiles of all 29 pangolins and identified 17 pangolins to be prioritized for enhanced breeding and future zoo exchange programs. We appreciate the zoo authorities for promoting genetic assessment of pangolin for better and more effective monitoring of the captive breeding of the endangered Indian pangolin.


Asunto(s)
Cruzamiento , Pangolines , Humanos , Femenino , Masculino , Animales , Alelos , Especies en Peligro de Extinción , Perfil Genético
19.
Conserv Biol ; 38(2): e14162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37551767

RESUMEN

Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.


Revelación de la magnitud de la caza furtiva del pangolín africano mediante el genotipo extenso de nanoporos de ADN de escamas incautadas Resumen Aunque el mercado de pangolines es ilegal, se incautan toneladas de sus escamas y productos derivados en varios puertos comerciales. Es un reto procesar estas magnas incautaciones y obtener el genotipo completo para usarlo en la trazabilidad logística ascendente e identificación de la especie y así imponer sanciones. Implementamos una canalización escalable del código de barras de ADN en el cual usamos la extracción rápida de ADN y la secuenciación MinION para obtener el genotipo de una proporción sustancial de las escamas de pangolín submuestreadas en dos cargamentos incautados en 2019 en Singapur (37.5 t). Usamos secuencias referenciales para emparejar las escamas con las regiones filogeográficas de origen. Identificamos en total 2,346 códigos de citocromo b (cytb) del pangolín de vientre blanco (Phataginus tricuspis) (de 1,091 escamas), de vientre negro (P. tetradactyla) (227 escamas) y del pangolín gigante (Smutsia gigantea) (1,028 escamas). La diversidad de haplotipos fue mayor en las escamas de P. tricuspis (121 haplotipos, 66 nuevos) que en las de P. tetradactyla (22 haplotipos, 15 nuevos) y S. gigantea (25 haplotipos, 21 nuevos). De los haplotipos nuevos, el 74.2% probablemente provenía del occidente y centro­occidente de África, lo que sugiere un resurgimiento potencial de la caza furtiva y poblaciones recién explotadas en estas regiones. Nuestros resultados demuestran la utilidad de submuestrear extensivamente las grandes incautaciones y esboza una estrategia molecular eficiente para un análisis genético rápido que debería ser accesible para la mayoría de los laboratorios forenses y las autoridades de aplicación.


Asunto(s)
Nanoporos , Pangolines , Humanos , Animales , Genotipo , Conservación de los Recursos Naturales/métodos , ADN , Convulsiones
20.
Integr Zool ; 19(3): 426-441, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38146613

RESUMEN

Pangolins (Pholidota, Manidae) are classified as an evolutionarily distinct and globally endangered mammal due to their unique morphology (nail-like scales and a myrmecophagous diet) and being the victim of heavy poaching and worldwide trafficking. As such, pangolins serve as a textbook example for studying the special phenotypic evolutionary adaptations and conservation genetics of an endangered species. Recent years have demonstrated significant advancements in the fields of molecular genetics and genomics, which have translated to a series of important research achievements and breakthroughs concerning the evolution and conservation genetics of pangolins. This review comprehensively presents the hitherto advances in phylogeny, adaptive evolution, conservation genetics, and conservation genomics that are related to pangolins, which will provide an ample understanding of their diversity, molecular adaptation mechanisms, and evolutionary potentials. In addition, we highlight the priority of investigating species/population diversity among pangolins and suggest several avenues of research that are highly relevant for future pangolin conservation.


Asunto(s)
Evolución Biológica , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Pangolines , Animales , Pangolines/genética , Filogenia , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA