Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Microb Pathog ; 193: 106771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969185

RESUMEN

Despite modern advances in food hygiene, food poisoning due to microbial contamination remains a global problem, and poses a great threat to human health. Especially, Listeria monocytogenes and Staphylococcus aureus are gram-positive bacteria found on food-contact surfaces with biofilms. These foodborne pathogens cause a considerable number of food poisoning and infections annually. Ovomucin (OM) is a water-insoluble gel-type glycoprotein in egg whites. Enzymatic hydrolysis can be used to improve the bioactive properties of OM. This study aimed to investigate whether ovomucin hydrolysates (OMHs) produced using five commercial enzymes (Alcalase®, Bromelain, α-Chymotrypsin, Papain, and Pancreatin) can inhibit the biofilm formation of L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7. Particularly, OMH prepared with papain (OMPP; 500 µg/mL) significantly inhibited biofilm formation in L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7 by 85.56 %, 80.28 %, 91.70 %, and 79.00 %, respectively. In addition, OMPP reduced the metabolic activity, exopolysaccharide production (EPS), adhesion ability, and gene expression associated with the biofilm formation of these bacterial strains. These results suggest that OMH, especially OMPP, exerts anti-biofilm effects against L. monocytogenes and S. aureus. Therefore, OMPP can be used as a natural anti-biofilm agent to control food poisoning in the food industry.


Asunto(s)
Antibacterianos , Biopelículas , Listeria monocytogenes , Ovomucina , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Ovomucina/farmacología , Ovomucina/metabolismo , Hidrólisis , Adhesión Bacteriana/efectos de los fármacos , Papaína/metabolismo , Pruebas de Sensibilidad Microbiana , Quimotripsina/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo
2.
J Phys Chem B ; 128(30): 7350-7361, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39034688

RESUMEN

We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a ß-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for ß-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (ß strand), concanavalin A (ß type I), elastase (ß type II), papain (α + ß), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.


Asunto(s)
Dicroismo Circular , Concanavalina A , Concanavalina A/química , Mioglobina/química , Proteínas/química , Papaína/química , Papaína/metabolismo , Péptidos/química , Electrones , Elastasa Pancreática/química , Elastasa Pancreática/metabolismo , Estructura Secundaria de Proteína
3.
J Phys Chem B ; 128(31): 7500-7512, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39052428

RESUMEN

Enzymatic peptide synthesis is a powerful alternative to solid-phase methods, as enzymes can have high regio- and stereoselectivity and high yield and require mild reaction conditions. This is beneficial in formulation research due to the rise of nucleic acid therapies. Peptide nucleic acids (PNAs) have a high affinity toward DNA and RNA, and their solubility and cellular delivery can be improved via conjugation to peptides. Here, we designed and assessed the viability of the papain enzyme to conjugate four PNA-peptide models in water and an organic solvent using QM/MM metadynamics. We found that the reactions in water yield better results, where three conjugates could potentially be synthesized by the enzyme, with the first transition state as the rate-limiting step, with an associated energy of 14.53 kcal mol-1, although with a slight endergonic profile. The results highlight the importance of considering the enzyme pockets and different substrate acceptivities and contribute to developing greener, direct, and precise synthetic routes for nucleic acid-based therapies. By exploring the enzyme's potential in conjunction with chemical synthesis, current protocols can be simplified for the synthesis of longer nucleic acids and peptide sequences (and, by extension, proteins) from smaller oligo or peptide blocks.


Asunto(s)
Teoría Funcional de la Densidad , Papaína , Ácidos Nucleicos de Péptidos , Péptidos , Solventes , Agua , Ácidos Nucleicos de Péptidos/química , Papaína/química , Papaína/metabolismo , Agua/química , Solventes/química , Péptidos/química , Simulación de Dinámica Molecular
4.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847939

RESUMEN

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Simulación del Acoplamiento Molecular , Péptidos , Hidrolisados de Proteína , Solubilidad , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Animales , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Agua/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Papaína/metabolismo , Papaína/antagonistas & inhibidores , Papaína/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo
5.
ACS Nano ; 18(27): 17969-17986, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920100

RESUMEN

Obesity is becoming a worldwide pandemic. Interfacial engineering of food lipid is expected to inhibit diet-induced obesity without damage to the eating enjoyment brought by high-fat diets. Unfortunately, this strategy has not been achieved yet. After screening different plant proteins, bromelain and papain were found to form wormlike and long-straight protein fibrils, respectively. The conversion of long-straight amyloid-like fibrils to wormlike fibrils was demonstrated in the fibrillation of bromelain. Using oil-in-water high internal phase emulsions (HIPEs) as a proof of concept, bromelain fibrils showed dramatically stronger interfacial stabilization capabilities than papain fibrils with high application potentials in the real-world formulation of high-fat food products such as mayonnaise. Compared with papain fibrils, oral administration of HIPEs stabilized by bromelain fibrils resulted in substantially higher fecal lipid contents and significantly decreased expression levels of the genes related to lipid absorption and transport in the intestine, including CD36, FATP-2, FATP-4, and APOA-4, without a difference in intervening gut microbiota. Consequently, dramatically less lipid absorption in the small intestine, markedly smaller chylomicron particles in the plasma, lower serum triglycerides, and controlled energy and lipid metabolism, as well as the inhibition of adipose expansion and overweight, were observed in the group with gavage of HIPEs stabilized by the bromelain fibrils rather than the papain fibrils. Furthermore, with the same calorie, substitution of all the fat in the standard high-fat feed of mice with the HIPEs emulsified by the bromelain fibrils showed a significantly stronger effect than the ones prepared by the papain fibrils on preventing high-fat-diet (HFD)-induced obesity including alleviation of adipose expansion and inflammation as well as fatty liver, also via inhibiting the absorption and transport of lipid in the intestine. The effect is ascribed to the suppressed lipolysis caused by a more compact and elastic interfacial layer formed by the wormlike fibrils than that of the long-straight fibrils, which are resistant to gastric environments and replacement by bile acids in digestion. Therefore, we provide an appealing and general strategy for controlling obesity by reducing the supply of free fatty acids (FAs) for absorption in the enteric lumen through protein fibril polymorphisms at the interface.


Asunto(s)
Obesidad , Papaína , Animales , Obesidad/metabolismo , Ratones , Papaína/metabolismo , Papaína/química , Bromelaínas/farmacología , Bromelaínas/química , Bromelaínas/metabolismo , Ratones Endogámicos C57BL , Masculino , Dieta Alta en Grasa , Emulsiones/química , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
6.
Food Chem ; 454: 139741, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805922

RESUMEN

The dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was developed for synchronous green extraction of five heavy metal ions in root vegetables. The combination of α-amylase, cellulase, and papain showed significant advantageous in extracting heavy metal ions. Under optimized dual-frequency ultrasonic conditions, the extraction rates of Cr, As, Cd, Pb, and Hg in carrots reached 99.04%, 105.88%, 104.65%, 104.10%, and 103.13% respectively. And the extraction process is highly efficient, completing in just 15 min. Compared to conventional microwave-assisted acid hydrolysis method, this technique eliminates the need for high-temperature concentrated acid, enhancing its environmental sustainability while maintaining mild reaction conditions, making it ideal for biosensors application. Additionally, simultaneous extraction and detection of four heavy metals in lotus roots were successfully achieved by using DUED and a fluorescent paper-based microfluidic chip. The obtained results are consistent with those obtained using conventional methods.


Asunto(s)
Metales Pesados , Raíces de Plantas , Verduras , Metales Pesados/aislamiento & purificación , Metales Pesados/química , Verduras/química , Raíces de Plantas/química , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Celulasa/química , Celulasa/metabolismo , Papaína/química , Papaína/metabolismo , Ultrasonido , Contaminación de Alimentos/análisis , Daucus carota/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124269, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608561

RESUMEN

A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.


Asunto(s)
Antígeno Carcinoembrionario , Colorimetría , Límite de Detección , Papaína , Antígeno Carcinoembrionario/análisis , Colorimetría/métodos , Papaína/metabolismo , Inmunoensayo/métodos , Humanos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/química , Catálisis , Bencidinas/química , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados
8.
Biosystems ; 238: 105194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513884

RESUMEN

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Asunto(s)
Laccaria , Micorrizas , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Ácido Aspártico/metabolismo , Cisteína/metabolismo , Simulación del Acoplamiento Molecular , Simbiosis , Inhibidores de Proteasas/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 217-226, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430019

RESUMEN

Osteoarthritis is a prevalent chronic disease. One of its primary pathological processes involves the degeneration of articular cartilage. Platelet-rich plasma (PRP) contains cytokines and growth factors that can stimulate the repair and regeneration of articular cartilage tissues. PRP may also slow the progression of osteoarthritis. The purpose of this experiment is to compare the efficacy of Leukocyte poor (LP) - PRP and Leukocyte rich (LR) - PRP in treating rabbit osteoarthritis and to investigate their mechanisms of action. Analyzing the impact of leukocytes on PRP therapeutic effectiveness will provide a valuable clinical reference for the choice of which PRP is better for the treatment of osteoarthritis. A rabbit osteoarthritis model was established by injecting papain into the knee joint cavity, and LP-PRP and LR-PRP were prepared through different centrifugation methods for injection into the knee joint cavity. Eight weeks after injection, rabbit knee cartilage specimens were observed for gross changes, HE staining, senna O-solid green staining, and immunohistochemistry of type II collagen and were quantitatively compared using Pelletier's score, Mankin's pathology score, and ImageJ image processing software. Injection of papain into the knee joint cavity successfully established a rabbit model of osteoarthritis. All three evaluation indexes differed significantly from those of the blank group (P<0.05). LP-PRP and LR-PRP exhibited therapeutic effects when compared with the model group. The two PRP groups had similar gross tissue appearance and pathology (P>0.05). The LR-PRP group had higher collagen type-II expression (P < 0.05) than the LP-PRP group. Both LP-PRP and LR-PRP proved therapeutic for the rabbit papain osteoarthritis model. The difference in leukocyte content between the two groups did not yield different cartilage morphology or other factors by 8 weeks posttreatment. LR-PRP displayed the ability to release more factors relevant to the metabolism of type II collagen than LP-PRP, enabling the preservation of into cartilage collagen content of type II collagen and delaying osteoarthritis progression.


Asunto(s)
Cartílago Articular , Osteoartritis , Plasma Rico en Plaquetas , Animales , Conejos , Colágeno Tipo II/metabolismo , Papaína/uso terapéutico , Papaína/metabolismo , Osteoartritis/terapia , Osteoartritis/metabolismo , Leucocitos/metabolismo
10.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543039

RESUMEN

Yak whey protein concentrates (YWPCs) have good functional properties, but there is still a gap in the study of their peptides. In this study, peptides were obtained by enzymatic hydrolysis, and the bioactivity of each ultrafiltration fraction was evaluated using an optimal process. YWPCs were isolated and purified from yak milk as the raw material. Alkaline protease, trypsin, and papain were used to hydrolyze YWPCs. The protease with the highest degree of hydrolysis (DH) and peptide concentration was selected as the most suitable enzyme. The effects of pH, temperature, time, and the enzyme-to-substrate ratio (E/S) on the DH and peptide concentration were investigated, and response surface methodology was utilized to optimize the hydrolysis process. The hydrolysate was separated using ultrafiltration membranes with molecular weight cut-offs of 10 kDa, 5 kDa, 3 kDa, and 1 kDa. The bioactivity of each ultrafiltration component was analyzed, including the inhibition rates of α-amylase and xanthine oxidase (XOD) activities and the scavenging rates of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The results indicated that alkaline protease was the best enzyme for hydrolyzing YWPCs. The peptide concentration in the YWPC hydrolysate was the highest (17.21 mg/mL) at a pH of 8 and a concentration of 7500 U/g, after 2.5 h at 62 °C. The enzymatic hydrolysate was ultrafiltered to yield four peptide fractions, of which the <1 kDa peptides exhibited the highest α-amylase inhibitory activity (22.06%), XOD inhibitory activity (17.15%), and ABTS cationic free radical scavenging rate (69.55%). This demonstrates the potential of YWPC hydrolyzed peptides for hypoglycemic, uric acid-lowering, and antioxidant applications, providing a theoretical basis for the high-value utilization of YWPCs.


Asunto(s)
Antioxidantes , Benzotiazoles , Depuradores de Radicales Libres , Ácidos Sulfónicos , Animales , Bovinos , Hidrólisis , Depuradores de Radicales Libres/química , Proteína de Suero de Leche , Antioxidantes/química , Péptidos/química , Papaína/metabolismo , alfa-Amilasas , Hidrolisados de Proteína/química
11.
PLoS Pathog ; 20(3): e1012100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527094

RESUMEN

The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.


Asunto(s)
COVID-19 , Proteasas Similares a la Papaína de Coronavirus , Humanos , Animales , Ratones , Proteasas Similares a la Papaína de Coronavirus/genética , SARS-CoV-2/metabolismo , Inmunidad Innata , Papaína/genética , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Replicación Viral , Poliproteínas
12.
Nat Plants ; 10(4): 618-632, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38409290

RESUMEN

Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure-function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.


Asunto(s)
Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Interacciones Huésped-Patógeno , Papaína/metabolismo , Ascomicetos , Magnaporthe
13.
Molecules ; 29(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338437

RESUMEN

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Asunto(s)
Bombyx , Maclura , Animales , Humanos , Hidrólisis , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Polvos , Péptido Hidrolasas/metabolismo , Proteína de Suero de Leche , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
14.
Eur J Med Chem ; 264: 116011, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065031

RESUMEN

The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.


Asunto(s)
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
15.
ACS Chem Biol ; 19(1): 22-36, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38150587

RESUMEN

The papain-like protease of SARS-COV-2 is essential for viral replication and pathogenesis. Its location within a much larger multifunctional protein, NSP3, makes it an ideal candidate for a targeted degradation approach capable of eliminating multiple functions with a single-molecule treatment. In this work, we have developed a HiBiT-based cellular model to study NSP3 degradation and used this platform for the discovery of monovalent NSP3 degraders. We present previously unreported degradation activity of published papain-like protease inhibitors. Follow-up exploration of structure-activity relationships and mechanism-of-action studies points to the recruitment of the ubiquitin-proteasome machinery that is solely driven by site occupancy, regardless of molecular features of the ligand. Supported by HDX data, we hypothesize that binding-induced structural changes in NSP3 trigger the recruitment of an E3 ligase and lead to proteasomal degradation.


Asunto(s)
COVID-19 , Proteasas Similares a la Papaína de Coronavirus , Papaína , Humanos , Papaína/metabolismo , Proteínas no Estructurales Virales/metabolismo , SARS-CoV-2/química , Inhibidores de Proteasas/metabolismo
16.
Food Funct ; 15(1): 401-410, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099483

RESUMEN

Fish collagen, derived from sustainable sources, offers a valuable substrate for generating peptides with diverse biofunctionalities. In this study, alkaline, papain, and ginger protease were used to enzymatically hydrolyze fish skin collagen. The peptide molecular weight distribution and sequence were measured using HPLC and ICP-MS-MS, with papain/alkaline protease (AP) and papain/alkaline/ginger protease (APG) hydrolyzed samples compared. As the results showed, the incorporation of ginger protease was useful for increasing the degree of hydrolysis, with the content of <400 Da peptides increasing from 49.82% to 58.56%. The identified peptide sequence in the APG sample had more proline at the C-terminal. The peptides were separated into two components (different in molecular weight) using gel column chromatography. The molecular weight distribution, amino acid composition, ACE inhibitory activity, and fibroblast proliferation activity of the collected components were measured. In comparison, the contents of proline and hydroxyproline in the larger peptides decreased obviously after combined hydrolysis by ginger protease, reflecting the formation of a peptide sequence of smaller molecular weight containing glycine and hydroxyproline. The combined hydrolysis of ginger protease was beneficial for the improvement of the ACE inhibitory activity of the sample. However, the fibroblast proliferation activity of AP was higher than that of APG, indicating that further hydrolysis by ginger protease may destroy the hydroxyproline at the end of the peptide sequence. This study proposed a creative directional hydrolysis method and provided practical guidance for the production of collagen peptides with enhanced functional activity.


Asunto(s)
Papaína , Péptidos , Animales , Hidrólisis , Hidroxiprolina , Papaína/metabolismo , Péptidos/química , Colágeno/metabolismo , Prolina , Relación Estructura-Actividad
17.
Food Chem ; 437(Pt 2): 137906, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37939420

RESUMEN

This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (∼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.


Asunto(s)
Bromelaínas , Péptido Hidrolasas , Péptido Hidrolasas/metabolismo , Bromelaínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Gusto , Papaína/metabolismo , Hidrólisis , Ácido Glutámico , Hidrolisados de Proteína/química
18.
PLoS Pathog ; 19(12): e1011872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38096325

RESUMEN

Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus. Here we describe the first crystal structure of the PRRSV PLP2 domain both in the presence and absence of its ubiquitin substrate, which reveals unique structural differences in this viral domain compared to PLP2 from EAV. To probe the role of PRRSV PLP2 deubiquitinating activity in host immune evasion, we selectively removed this activity from the domain by mutagenesis and found that the viral domain could no longer downregulate cellular interferon production. Interestingly, unlike EAV, and also unlike the situation for MERS-CoV, we found that recombinant PRRSV carrying PLP2 DUB-specific mutations faces significant selective pressure to revert to wild-type virus in MARC-145 cells, suggesting that the PLP2 DUB activity, which in PRRSV is present as three different versions of viral protein nsp2 expressed during infection, is critically important for PRRSV replication.


Asunto(s)
Equartevirus , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Caballos , Porcinos , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Mutagénesis , Péptido Hidrolasas/genética , Replicación Viral , Interferones/genética , Proteínas no Estructurales Virales/metabolismo
19.
J Phys Chem Lett ; 14(45): 10278-10284, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37942913

RESUMEN

To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.


Asunto(s)
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Sitio Alostérico , SARS-CoV-2/metabolismo , Ubiquitina , Simulación de Dinámica Molecular , Sitios de Unión , Dexametasona , Antivirales/química , Inhibidores de Proteasas
20.
Biomacromolecules ; 24(12): 5620-5637, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009757

RESUMEN

Solubilized, gel-forming decellularized extracellular matrix (dECM) is used in a wide range of basic and translational research and due to its inherent bioactivity can promote structural and functional tissue remodeling. The animal-derived protease pepsin has become the standard proteolytic enzyme for the solubilization of almost all types of collagen-based dECM. In this study, pepsin was compared with papain, α-amylase, and collagenase for their potential to solubilize porcine liver dECM. Maximum preservation of bioactive components and native dECM properties was used as a decisive criterion for further application of the enzymes, with emphasis on minimal destruction of the protein structure and maintained capacity for physical thermogelation at neutral pH. The solubilized dECM digests, and/or their physically gelled hydrogels were characterized for their rheological properties, gelation kinetics, GAG content, proteomic composition, and growth factor profile. This study highlights papain as a plant-derived enzyme that can serve as a cost-effective alternative to animal-derived pepsin for the efficient solubilization of dECM. The resulting homogeneous papain-digested dECM preserved its thermally triggered gelation properties similar to pepsin digests, and the corresponding dECM hydrogels demonstrated their enhanced bioadhesiveness in single-cell force spectroscopy experiments with fibroblasts. The viability and proliferation of human HepaRG cells on dECM gels were similar to those on pure rat tail collagen type I gels. Papain is not only highly effective and economically attractive for dECM solubilization but also particularly interesting when digesting human-tissue-derived dECM for regenerative applications, where animal-derived materials are to be avoided.


Asunto(s)
Matriz Extracelular , Papaína , Ratas , Porcinos , Humanos , Animales , Matriz Extracelular/química , Papaína/metabolismo , Matriz Extracelular Descelularizada , Pepsina A/análisis , Pepsina A/metabolismo , Pepsina A/farmacología , Proteómica , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA