Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 171
1.
Environ Microbiol Rep ; 16(3): e13260, 2024 Jun.
Article En | MEDLINE | ID: mdl-38838099

As part of ongoing efforts to discover novel polyhydroxyalkanoate-producing bacterial species, we embarked on characterizing the thermotolerant species, Paracoccus kondratievae, for biopolymer synthesis. Using traditional chemical and thermal characterization techniques, we found that P. kondratievae accumulates poly(3-hydroxybutyrate) (PHB), reaching up to 46.8% of the cell's dry weight after a 24-h incubation at 42°C. Although P. kondratievae is phylogenetically related to the prototypical polyhydroxyalkanoate producer, Paracoccus denitrificans, we observed significant differences in the PHB production dynamics between these two Paracoccus species. Notably, P. kondratievae can grow and produce PHB at elevated temperatures ranging from 42 to 47°C. Furthermore, P. kondratievae reaches its peak PHB content during the early stationary growth phase, specifically after 24 h of growth in a flask culture. This is then followed by a decline in the later stages of the stationary growth phase. The depolymerization observed in this growth phase is facilitated by the abundant presence of the PhaZ depolymerase enzyme associated with PHB granules. We observed the highest PHB levels when the cells were cultivated in a medium with glycerol as the sole carbon source and a carbon-to-nitrogen ratio of 10. Finally, we found that PHB production is induced as an osmotic stress response, similar to other polyhydroxyalkanoate-producing species.


Hydroxybutyrates , Paracoccus , Polyesters , Hydroxybutyrates/metabolism , Polyesters/metabolism , Paracoccus/metabolism , Paracoccus/growth & development , Paracoccus/genetics , Hot Temperature , Temperature , Phylogeny , Polyhydroxybutyrates
2.
Antonie Van Leeuwenhoek ; 117(1): 81, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777900

A Gram-stain-negative, aerobic, non-motile, catalase- and oxidase-positive, pale orange, rod-shaped strain EF6T, was isolated from a natural wetland reserve in Hebei province, China. The strain grew at 25-37 °C (optimum, 30 °C), pH 5-9 (optimum, pH 7), and in the presence of 1.0-4.0% (w/v) NaCl (optimum, 2%). A phylogenetic analysis based on 16S rRNA gene sequence revealed that strain EF6T belongs to the genus Paracoccus, and the closest members were Paracoccus shandongensis wg2T with 98.1% similarity, Paracoccus fontiphilus MVW-1 T (97.9%), Paracoccus everestensis S8-55 T (97.7%), Paracoccus subflavus GY0581T (97.6%), Paracoccus sediminis CMB17T (97.3%), Paracoccus caeni MJ17T (97.0%), and Paracoccus angustae E6T (97.0%). The genome size of strain EF6T was 4.88 Mb, and the DNA G + C content was 65.3%. The digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain EF6T and the reference strains were all below the threshold limit for species delineation (< 32.8%, < 88.0%, and < 86.7%, respectively). The major fatty acids (≥ 5.0%) were summed feature 8 (86.3%, C18:1 ω6c and/or C18:1 ω7c) and C18:1 (5.0%) and the only isoprenoid quinone was Q-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, five unidentified phospholipids, and an unidentified aminolipid. Strain EF6T displays notable resistance to benzoate and selenite, with higher tolerance levels (25 g/L for benzoate and 150 mM for selenite) compared to the closely related species. Genomic analysis identified six benzoate resistance genes (acdA, pcaF, fadA, pcaC, purB, and catA) and twenty selenite resistance and reduction-related genes (iscR, ssuB, ssuD, selA, selD and so on). Additionally, EF6T possesses unique genes (catA, ssuB, and ssuC) absent in the closely related species for benzoate and selenite resistance. Its robust resistance to benzoate and selenite, coupled with its genomic makeup, make EF6T a promising candidate for the remediation of both organic and inorganic pollutants. It is worth noting that the specific resistance phenotypes described above were not reported in other novel species in Paracoccus. Based on the results of biochemical, physiological, phylogenetic, and chemotaxonomic analyses, combined with comparisons of the 16S rRNA gene sequence and the whole genome sequence, strain EF6T is considered to represent a novel species of the genus Paracoccus within the family Rhodobacteraceae, for which the name Paracoccus benzoatiresistens sp. nov. is proposed. The type strain is EF6T (= GDMCC 1.3400 T = JCM 35642 T = MCCC 1K08702T).


Base Composition , DNA, Bacterial , Fatty Acids , Paracoccus , Phylogeny , RNA, Ribosomal, 16S , Wetlands , Paracoccus/genetics , Paracoccus/classification , Paracoccus/isolation & purification , Paracoccus/metabolism , Paracoccus/drug effects , RNA, Ribosomal, 16S/genetics , Fatty Acids/metabolism , Fatty Acids/chemistry , DNA, Bacterial/genetics , China , Sodium Selenite/metabolism , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Nucleic Acid Hybridization , Oxidation-Reduction , Drug Resistance, Bacterial
3.
Sci Total Environ ; 927: 172099, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580115

Until now, bacteria able to degrade, 3,3'-iminodipropionitrile (IDPN), a neurotoxin that destroys vestibular hair cells, causing ototoxicity, culminating in irreversible movement disorders, had never been isolated. The aim of this study was to isolate a novel IDPN-biodegrading microorganism and characterize its metabolic pathway. Enrichment was performed by inoculating activated sludge from a wastewater treatment bioreactor that treated IDPN-contaminated wastewater in M9 salt medium, with IDPN as the sole carbon source. A bacterial strain with a spherical morphology that could grow at high concentrations was isolated on a solid medium. Growth of the isolated strain followed the Monod kinetic model. Based on the 16S rRNA gene, the isolate was Paracoccus communis. Whole-genome sequencing revealed that the isolated P. communis possessed the expected full metabolic pathway for IDPN biodegradation. Transcriptome analyses confirmed the overexpression of the gene encoding hydantoinase/oxoprolinase during the exponential growth phase under IDPN-fed conditions, suggesting that the enzyme involved in cleaving the imine bond of IDPN may promote IDPN biodegradation. Additionally, the newly discovered P. communis isolate seems to metabolize IDPN through cleavage of the imine bond in IDPN via nitrilase, nitrile hydratase, and amidase reactions. Overall, this study lays the foundation for the application of IDPN-metabolizing bacteria in the remediation of IDPN-contaminated environments.


Biodegradation, Environmental , Bioreactors , Nitriles , Paracoccus , Waste Disposal, Fluid , Wastewater , Nitriles/metabolism , Paracoccus/metabolism , Paracoccus/genetics , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , RNA, Ribosomal, 16S
4.
Bioresour Technol ; 401: 130732, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677386

Acetaminophen (APAP) is a frequently used, over-the-counter analgesic and antipyretic medication. Considering increase in global consumption, its ubiquity in environment with potential toxic impacts has become a cause of great concern. Hence, bioremediation of this emerging contaminant is of paramount significance. The present study incorporates a microcosm centric omics approach to gain in-depth insights into APAP degradation by Paracoccus sp. APAP_BH8. It can metabolize APAP (300 mg kg-1) within 16 days in soil microcosms. Genome analysis revealed potential genes capable of mediating degradation includes M20 aminoacylase family protein, guanidine deaminase, 4-hydroxybenzoate 3-monooxygenase, and 4-hydroxyphenylpyruvate dioxygenase. Whole proteome analysis showed differential expression of enzymes and bioinformatics provided evidence for stable binding of intermediates at the active site of considered enzymes. Metabolites identified were 4-aminophenol, hydroquinone, and 3-hydroxy-cis, cis-muconate. Therefore, Paracoccus sp. APAP_BH8 with versatile enzymatic and genetic attributes can be a promising candidate for formulating improved in situ APAP bioremediation strategies.


Acetaminophen , Biodegradation, Environmental , Genomics , Proteomics , Acetaminophen/metabolism , Proteomics/methods , Genomics/methods , Paracoccus/metabolism , Paracoccus/genetics , Metabolomics , Proteome/metabolism
5.
Sci Total Environ ; 927: 171966, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38537831

Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.


Benzo(a)pyrene , Biodegradation, Environmental , Humic Substances , Paracoccus , Soil Pollutants , Benzo(a)pyrene/metabolism , Paracoccus/metabolism , Soil Pollutants/metabolism , Soil Microbiology
6.
J Environ Manage ; 353: 120189, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38295644

Insufficient carbon source has become the main limiting factor for efficient nitrogen removal in wastewater treatment. In this study, an intermittently-aerated activated sludge system with iron-chitosan (Fe-CS) beads addition was proposed for nitrogen removal from low C/N wastewater. By adding Fe-CS beads, partial nitrification-denitrification (PND) process and significant enrichment of Paracoccus (with ability of iron reduction/ammonium oxidation/aerobic denitrification) were observed in the reactor. The accumulation rate of NO2--N reached 81.9 %, and the total nitrogen removal efficiency was improved to 93.9 % by shortening the aeration time. The higher activity of ammonium oxidizing bacteria and inhibited activity of nitrite-oxidizing bacteria in Fe-CS assisted system mediated the occurrence of PND. In contrast, the traditional nitrification and denitrification process occurred in the control group. The high-throughput sequencing analysis and metagenomic results confirmed that the addition of Fe-CS induced 77.8 % and 54.9 % enrichment of Paracoccus in sludge and Fe-CS beads, respectively, while almost no enrichment was observed in control group. Furthermore, with the addition of Fe-CS beads, the expression of genes related to outer membrane porin, cytochrome c, and TCA was strengthened, thereby enhancing the electron transport of Fe(Ⅱ) (electron donor) and Fe(Ⅲ) (electron acceptor) with pollutants in the periplasm. This study provides new insights into the direct enrichment of iron-reducing bacteria and its PND performance induced by the Fe-CS bead addition. It therefore offers an appealing strategy for low C/N wastewater treatment.


Ammonium Compounds , Chitosan , Paracoccus , Nitrification , Sewage , Denitrification , Chitosan/metabolism , Iron , Paracoccus/metabolism , Bioreactors/microbiology , Bacteria/metabolism , Ammonium Compounds/metabolism , Oxidation-Reduction , Nitrogen/metabolism
7.
Bioresour Technol ; 384: 129318, 2023 Sep.
Article En | MEDLINE | ID: mdl-37315624

N,N-dimethylformamide is a toxic chemical solvent, which widely exists in industrial wastewater. Nevertheless, the relevant methods merely achieved non-hazardous treatment of N,N-dimethylformamide. In this study, one efficient N,N-dimethylformamide degrading strain was isolated and developed for pollutant removal coupling with poly(3-hydroxybutyrate) (PHB) accumulation. The functional host was characterized as Paracoccus sp. PXZ, which could consume N,N-dimethylformamide as the nutrient substrate for cell reproduction. Whole-genome sequencing analysis confirmed that PXZ simultaneously possesses the essential genes for poly(3-hydroxybutyrate) synthesis. Subsequently, the approaches of nutrient supplementation and various physicochemical variables to strengthen poly(3-hydroxybutyrate) production were investigated. The optimal biopolymer concentration was 2.74 g·L-1 with a poly(3-hydroxybutyrate) proportion of 61%, showing a yield of 0.29 g-PHB·g-1-fructose. Furthermore, N,N-dimethylformamide served as the special nitrogen matter that could realize a similar poly(3-hydroxybutyrate) accumulation. This study provided a fermentation technology coupling with N,N-dimethylformamide degradation, offering a new strategy for resource utilization of specific pollutants and wastewater treatment.


Environmental Pollutants , Paracoccus , 3-Hydroxybutyric Acid/metabolism , Dimethylformamide/metabolism , Paracoccus/metabolism , Environmental Pollutants/metabolism , Polyesters/metabolism , Hydroxybutyrates/metabolism
8.
J Environ Manage ; 332: 117372, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36731410

Continuous and excessive usage of erythromycin results in serious environmental pollution and presents a health risk to humans. Biological treatment is considered as an efficient and economical method to remove it from the environment. In this study, a novel erythromycin-degrading bacterial strain, W7, isolated from sewage sludge was identified as Paracoccus versutus. Strain W7 degraded 58.5% of 50 mg/L erythromycin in 72 h under the optimal conditions of 35 °C, pH 7.0, and 0.1% sodium citrate with yeast powder in mineral salt medium. It completely eliminated erythromycin from erythromycin fermentation residue at concentrations of 100 and 300 mg/L within 36 and 60 h, respectively. Erythromycin esterase (EreA) was found to be involved in erythromycin metabolism in this strain and was expressed successfully. EreA could hydrolyze erythromycin, and its maximum activity occurred at pH 8.5 and 35 °C. Finally, six intermediates of erythromycin degraded by strain W7 were detected by high performance liquid chromatography mass spectrometry. Based on the novel intermediates and enzymes, we determined two possible pathways of erythromycin degradation by strain W7. This study broadened our understanding of the erythromycin catabolic processes of P. versutus and developed a feasible microbial strategy for removing erythromycin from erythromycin fermentation residue, wastewater, and other erythromycin-contaminated environments.


Paracoccus , Humans , Paracoccus/metabolism , Erythromycin/metabolism , Sewage , Biodegradation, Environmental
9.
Microbiol Spectr ; 10(6): e0160622, 2022 12 21.
Article En | MEDLINE | ID: mdl-36287077

High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic Paracoccus isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator Paracoccus had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other Paracoccus, contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. IMPORTANCE For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, in vitro endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.


Hot Springs , Paracoccus , Betaine/metabolism , Hot Springs/microbiology , Phylogeny , Paracoccus/genetics , Paracoccus/metabolism , Boron , Lithium , Amino Acids , Glycine
10.
Bioresour Technol ; 363: 127939, 2022 Nov.
Article En | MEDLINE | ID: mdl-36100183

The expensive carbon matrix is a bottleneck restricting the industrialization of polyhydroxyalkanoates (PHAs). Volatile fatty acids (VFAs) derived from waste activated sludge via anaerobic fermentation might be alternative carbon matters for PHAs synthesis. In this study, the effect of enzymes on VFAs yields and the feasibility of the produced VFAs for PHAs fermentation by Paracoccus sp. TOH were investigated. The optimum cumulative VFAs concentration reached 4076.6 mg-COD·L-1 in the lysozyme treatment system. Correspondingly, the highest poly(3-hydroxybuturate-co-3-hydroxyvalerate) (PHBV) concentration (119.1 mg·L-1) containing 20.3 mol% 3-hydroxyvalerate was obtained. It proved that Paracoccus sp. TOH possesses the capability for PHBV accumulation. The functional hydrolytic-acidogenic microorganisms, such as Clostridium sensu stricto and Bacteroides sp. were accumulated. The functional genes encoding hydrolysis, carbohydrates metabolism, VFAs generation were enriched. This study offered a possible strategy for VFAs production and verified the feasibility of sludge hydrolysate as a high-quality carbon substrate for PHAs fermentation.


Paracoccus , Polyhydroxyalkanoates , Carbohydrates/chemistry , Carbon , Fatty Acids, Volatile/metabolism , Fermentation , Hydrogen-Ion Concentration , Muramidase/metabolism , Paracoccus/metabolism , Pentanoic Acids , Polyhydroxyalkanoates/metabolism , Sewage/chemistry
11.
J Appl Microbiol ; 132(6): 4208-4224, 2022 Jun.
Article En | MEDLINE | ID: mdl-35294092

The genus Paracoccus represents a taxonomically diverse group comprising more than 80 novel species isolated from various pristine and polluted environments. The species are characterized as coccoid-shaped Gram-negative bacteria with versatile metabolic attributes and classified as autotrophs, heterotrophs and/or methylotrophs. The present study highlights the up-to-date global taxonomic diversity and critically discusses the significance of genome analysis for identifying the genomic determinants related to functional attributes mainly bioplastic synthesis and biodegradation potential that makes these isolates commercially viable. The analysis accentuates polyphasic and genomic attributes of Paracoccus spp. which could be harnessed for commercial applications and emphasizes the need of integrating genome-based computational analysis for evolutionary species and functional diversification. The work reflects on the underexplored genetic potential for bioplastic synthesis which can be harnessed using advanced genomic methods. It also underlines the degradation potential and possible use of naturally-occurring pollutant-degrading Paracoccus isolates for the development of a biodegradation system and efficient removal of contaminants. The work contemplates plausible use of such potent isolates to establish the plant-microbe interaction, contributing toward contaminated land reclamation. Overall, the work signifies the need and application of genome analysis to identify and explore the prospective potential of Paracoccus spp. for environmental application toward achieving sustainability.


Paracoccus , Xenobiotics , Bacterial Typing Techniques , Biodegradation, Environmental , DNA, Bacterial/genetics , Fatty Acids/analysis , Genomics , Paracoccus/genetics , Paracoccus/metabolism , Phylogeny , Prospective Studies , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Xenobiotics/metabolism
12.
Int Microbiol ; 25(2): 365-378, 2022 May.
Article En | MEDLINE | ID: mdl-35032229

Lindane contamination in different environmental matrices has been a global concern for long. Bacterial consortia consisting of Paracoccus sp. NITDBR1, Rhodococcus rhodochrous NITDBS9, Ochrobactrum sp. NITDBR3, NITDBR4 and NITDBR5 were used for the bioremediation of soil artificially contaminated with lindane. The bacteria, Paracoccus sp. NITDBR1 and Rhodococcus rhodochrous NITDBS9, have been selected based on their lindane degrading capacity in liquid culture conditions (~80-90 %). The remaining three bacteria were chosen for their auxiliary properties for plant growth promotion, such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production and ammonia production under in vitro conditions. In this study, market wastes, mainly vegetable wastes, were added to the soil as a biostimulant to form a biomixture for assisting the degradation of lindane by bioaugmentation. Residual lindane was measured at regular intervals of 7 days to monitor the biodegradation process. It was observed that the consortium could degrade ~80% of 50 mg kg-1 lindane in soil which was further increased in the biomixture after six weeks of incubation. Bioassays performed on plant seeds and cytotoxicity studies performed on human skin fibroblast and HCT116 cell lines revealed that the groups contaminated with lindane and treated with the bacterial consortium showed lower toxicity than their respective controls without any bacteria. Hence, the use of both pesticide degrading and plant growth-promoting bacteria in a consortium can be a promising strategy for improved bioremediation against chemical pesticides, particularly in soil and agricultural fields, simultaneously enhancing crop productivity in those contaminated soil.


Paracoccus , Pesticides , Rhodococcus , Soil Pollutants , Biodegradation, Environmental , Biological Assay , Hexachlorocyclohexane/metabolism , Hexachlorocyclohexane/toxicity , Humans , Microbial Consortia , Paracoccus/metabolism , Pesticides/metabolism , Rhodococcus/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
13.
Int J Biol Macromol ; 192: 289-297, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34619282

A cell retention culture of Paracoccus sp. LL1 was performed in a membrane bioreactor equipped with an internal ceramic filter module to reach high cell density and thus enhance the co-production of polyhydroxyalkanoates (PHA) and astaxanthin as growth-associated products. Cell retention culture results showed that PHA accumulation increased with increasing dry cell weight (DCW), giving rise to a maximum of 113 ± 0.92 g/L of DCW with 43.9 ± 0.91 g/L of PHA (38.8% of DCW) at 48 h. A significant increase in both intracellular and extracellular astaxanthin concentrations was also recorded during fermentation process achieving a maximum of 8.51 ± 0.20 and 10.2 ± 0.24 mg/L, respectively. Amounts of PHA and total astaxanthin produced by cell retention culture were 6.29 and 19.7-folds higher, respectively, than those recorded under batch cultivation. PHA and total astaxanthin productivities by cell retention culture also increased up to 0.914 g/L/h and 0.781 mg/L/h, respectively, which were 3.54 and 11.1-folds higher than those of batch culture. Based on gas chromatography, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy, the extracted PHA was identified as a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 3-hydroxyvalerate content of 3.78 mol%.


Batch Cell Culture Techniques/methods , Bioreactors , Fermentation , Paracoccus/metabolism , Polyhydroxyalkanoates/biosynthesis , Nuclear Magnetic Resonance, Biomolecular , Polyhydroxyalkanoates/analysis , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Xanthophylls/analysis , Xanthophylls/metabolism
14.
Folia Microbiol (Praha) ; 66(5): 819-830, 2021 Oct.
Article En | MEDLINE | ID: mdl-34148171

Whey, the main by-product obtained from the manufacture of cheese, which contains a very high organic load (mainly due to the lactose content), is not easily degradable and creates concern over environmental issues. Hydrolysis of lactose present in whey and conversion of whey lactose into valuable products such as bioethanol, sweet syrup, and animal feed offers the possibility of whey bioremediation. The increasing need for bioremediation in the dairy industry has compelled researchers to search for a novel source of ß-galactosidase with diverse properties. In the present study, the bacterium Paracoccus marcusii KGP producing ß-galactosidase was subjected to morphological, biochemical, and probiotic characterisation. The bacterial isolate was found to be non-pathogenic and resistant to low pH (3 and 4), bile salts (0.2%), salt (10%), pepsin (at pH 3), and pancreatin (at pH 8). Further characterisation revealed that the bacteria have a good auto-aggregation ability (40% at 24 h), higher hydrophobicity (chloroform-60%, xylene-50%, and ethyl acetate-40%) and a broad spectrum of antibiotic susceptibility. The highest growth of P. marcusii KGP was achieved at pH 7 and 28 °C, and the yeast extract, galactose, and MgSO4 were the best for the growth of the bacterial cells. The bacterium KGP was able to utilise whey as a substrate for its growth with good ß-galactosidase production potential. Furthermore, the ß-galactosidase extracted from the isolate KGP could hydrolyse 47% whey lactose efficiently at 50 °C. The study thus reveals the potential application of ß-galactosidase from P. marcusii KGP in whey bioremediation.


Industrial Waste , Paracoccus , Probiotics , Whey , Animals , Biodegradation, Environmental , Dairying , Paracoccus/metabolism , Probiotics/metabolism , Whey/microbiology
15.
Appl Environ Microbiol ; 87(17): e0092921, 2021 08 11.
Article En | MEDLINE | ID: mdl-34160268

Poly-3-hydroxyalkanoic acids (PHAs) are bacterial storage polymers commonly used in bioplastic production. Halophilic bacteria are industrially interesting organisms, as their salinity tolerance and psychrophilic nature lowers sterility requirements and subsequent production costs. We investigated PHA synthesis in two bacterial strains, Halomonas sp. 363 and Paracoccus sp. 392, isolated from Southern Ocean sea ice and elucidated the related PHA biopolymer accumulation and composition with various approaches, such as transcriptomics, microscopy, and chromatography. We show that both bacterial strains produce PHAs at 4°C when the availability of nitrogen and/or oxygen limited growth. The genome of Halomonas sp. 363 carries three phaC synthase genes and transcribes genes along three PHA pathways (I to III), whereas Paracoccus sp. 392 carries only one phaC gene and transcribes genes along one pathway (I). Thus, Halomonas sp. 363 has a versatile repertoire of phaC genes and pathways enabling production of both short- and medium-chain-length PHA products. IMPORTANCE Plastic pollution is one of the most topical threats to the health of the oceans and seas. One recognized way to alleviate the problem is to use degradable bioplastic materials in high-risk applications. PHA is a promising bioplastic material as it is nontoxic and fully produced and degraded by bacteria. Sea ice is an interesting environment for prospecting novel PHA-producing organisms, since traits advantageous to lower production costs, such as tolerance for high salinities and low temperatures, are common. We show that two sea-ice bacteria, Halomonas sp. 363 and Paracoccus sp. 392, are able to produce various types of PHA from inexpensive carbon sources. Halomonas sp. 363 is an especially interesting PHA-producing organism, since it has three different synthesis pathways to produce both short- and medium-chain-length PHAs.


Halomonas/metabolism , Ice Cover/microbiology , Paracoccus/metabolism , Polyhydroxyalkanoates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cold Temperature , Genome, Bacterial , Halomonas/genetics , Halomonas/growth & development , Halomonas/isolation & purification , Paracoccus/genetics , Paracoccus/growth & development , Paracoccus/isolation & purification , Phylogeny , Polyhydroxyalkanoates/chemistry , Seawater/microbiology , Temperature
16.
Microb Ecol ; 81(1): 267-277, 2021 Jan.
Article En | MEDLINE | ID: mdl-32681284

Pigmented bacterial symbionts play major roles in the health of coral holobionts. However, there is scarce knowledge on the diversity of these microbes for several coral species. To gain further insights into holobiont health, pigmented bacterial isolates of Fabibacter pacificus (Bacteroidetes; n = 4), Paracoccus marcusii (Alphaproteobacteria; n = 1), and Pseudoalteromonas shioyasakiensis (Gammaproteobacteria; n = 1) were obtained from the corals Mussismilia braziliensis and Montastraea cavernosa in Abrolhos Bank, Brazil. Cultures of these bacterial symbionts produced strong antioxidant activity (catalase, peroxidase, and oxidase). To explore these bacterial isolates further, we identified their major pigments by HPLC and mass spectrometry. The six phylogenetically diverse symbionts had similar pigment patterns and produced myxol and keto-carotene. In addition, similar carotenoid gene clusters were confirmed in the whole genome sequences of these symbionts, which reinforce their antioxidant potential. This study highlights the possible roles of bacterial symbionts in Montastraea and Mussismilia holobionts.


Anthozoa/microbiology , Antioxidants/metabolism , Bacteroidetes/metabolism , Paracoccus/metabolism , Pigments, Biological/metabolism , Pseudoalteromonas/metabolism , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Brazil , Carotenoids/metabolism , Catalase/biosynthesis , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Oxidoreductases/biosynthesis , Paracoccus/genetics , Paracoccus/isolation & purification , Peroxidase/biosynthesis , Pigments, Biological/genetics , Pseudoalteromonas/genetics , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
17.
Microb Cell Fact ; 19(1): 141, 2020 Jul 13.
Article En | MEDLINE | ID: mdl-32660485

BACKGROUND: Carotenoids are natural tetraterpene pigments widely utilized in the food, pharmaceutical and cosmetic industries. Currently, chemical synthesis of these compounds outperforms their production in Escherichia coli or yeast due to the limited efficiency of the latter. The use of natural microbial carotenoid producers, such as bacteria of the genus Paracoccus (Alphaproteobacteria), may help to optimize this process. In order to couple the ability to synthesize these pigments with the metabolic versatility of this genus, we explored the possibility of introducing carotenoid synthesis genes into strains capable of efficient growth on simple low-cost media. RESULTS: We constructed two carotenoid-producing strains of Paracoccus carrying a new plasmid, pCRT01, which contains the carotenoid synthesis gene locus crt from Paracoccus marcusii OS22. The plasmid was created in vivo via illegitimate recombination between crt-carrying vector pABW1 and a natural "paracoccal" plasmid pAMI2. Consequently, the obtained fusion replicon is stably maintained in the bacterial population without the need for antibiotic selection. The introduction of pCRT01 into fast-growing "colorless" strains of Paracoccus aminophilus and Paracoccus kondratievae converted them into efficient producers of a range of both carotenes and xanthophylls. The exact profile of the produced pigments was dependent on the strain genetic background. To reduce the cost of carotenoid production in this system, we tested the growth and pigment synthesis efficiency of the two strains on various simple media, including raw industrial effluent (coal-fired power plant flue gas desulfurization wastewater) supplemented with molasses, an industrial by-product rich in sucrose. CONCLUSIONS: We demonstrated a new approach for the construction of carotenoid-producing bacterial strains which relies on a single plasmid-mediated transfer of a pigment synthesis gene locus between Paracoccus strains. This strategy facilitates screening for producer strains in terms of synthesis efficiency, pigment profile and ability to grow on low-cost industrial waste-based media, which should increase the cost-effectiveness of microbial production of carotenoids.


Carotenoids/metabolism , Industrial Waste , Paracoccus/growth & development , Paracoccus/genetics , Paracoccus/metabolism , Xanthophylls/metabolism , DNA, Bacterial/genetics , Industrial Microbiology , Metabolic Networks and Pathways/genetics , Multigene Family , Plasmids/genetics
18.
Chemosphere ; 257: 127162, 2020 Oct.
Article En | MEDLINE | ID: mdl-32485514

Deltamethrin is used widely in Eriocheir sinensis aquaculture to remove wild fish and parasites. The residual deltamethrin greatly affects the growth and quality of E. sinensis. In this study, the LC50 of deltamethrin against E. sinensis at 24, 48 and 96 h was determined to be 6.5, 5.0 and 2.8 µg/L, respectively. The enzyme activity and gene transcription of SOD, CAT, and PO in the hepatopancreas of E. sinensis after deltamethrin stimulation showed an increasing tendency, and these enzymes reached their maximum activities at 6-10 d. The MDA content accumulated with increased time of deltamethrin stress. After 15 d of deltamethrin stress, the hepatopancreas of E. sinensis was found to be damaged based on HE staining. These results showed that deltamethrin is highly toxic to E. sinensis. But the half-life of deltamethrin is long and mainly relies on biodegradation. To resolve the pollution of residual deltamethrin, a strain of deltamethrin-degrading bacteria, P-2, was isolated from the sediment of an E. sinensis culture pond. Through morphological observation, physiological and biochemical identification and 16S rDNA sequence analysis, we found that this strain belonged to Paracoccus sp. When the pH was 7, the substrate concentration was low, the inoculation amount was high, and the deltamethrin degradation effect of Paracoccus sp. P-2 was good. The deltamethrin residue in the hepatopancreas and muscle of E. sinensis decreased significantly when Paracoccus sp. P-2 was added at 6.0 × 108 CFU/L. The degradation efficiency of Paracoccus sp. P-2 in the hepatopancreas and muscle was more than 70%. These results showed that Paracoccus sp. P-2, the first deltamethrin-degrading bacterium in aquaculture, could be used to remove residual deltamethrin and improve the food safety of E. sinensis.


Brachyura/physiology , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Animals , Aquaculture , Bacteria , Biodegradation, Environmental , Brachyura/metabolism , Hepatopancreas/metabolism , Insecticides/metabolism , Lethal Dose 50 , Nitriles/metabolism , Paracoccus/genetics , Paracoccus/isolation & purification , Paracoccus/metabolism , Polymers , Pyrethrins/metabolism
19.
Folia Microbiol (Praha) ; 65(5): 811-822, 2020 Oct.
Article En | MEDLINE | ID: mdl-32394298

A new ß-galactosidase-producing bacterium KGP, isolated from the Bay of Bengal, was identified as Paracoccus marcusii through morphology, biochemistry and 16S rRNA sequencing. This study is the first report on the production of ß-galactosidase from P. marcusii. The medium components for the high yield of ß-galactosidase were optimised using response surface methodology (RSM). A set of 17 experiments consisting of three independent variables, viz. yeast extract, galactose and MgSO4, was employed. A second-order polynomial equation was used for the analysis of the response, and the optimum ß-galactosidase yield was achieved using 12.5 g/L yeast extract, 12.5 g/L galactose and 12.5 mmol/L MgSO4. The predicted quadratic model was inferred to be significant from the F-value, P value and the lack of fit value. Optimisation of the media components resulted in a ninefold increase (560 Miller units) in ß-galactosidase production. Furthermore, the hydrolysis and transgalactosylation efficiency of the crude ß-galactosidase was assessed and the results showed that the lactose was successfully hydrolysed and transgalactosylated at an optimum temperature of 40 °C and 50 °C, respectively. Considering the overall yield and productivity, P. marcusii can be considered a candidate for the industrial production of ß-galactosidase. This study provides an essential basis for the future production and use of the alkali-tolerant ß-galactosidase from P. marcusii KGP.


Oligosaccharides/biosynthesis , Paracoccus/metabolism , beta-Galactosidase/metabolism , Bioreactors , Galactose/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Lactose/metabolism , Paracoccus/classification , Paracoccus/genetics , Paracoccus/isolation & purification , Phylogeny , RNA, Ribosomal, 16S/genetics , Temperature
20.
Environ Microbiol Rep ; 12(3): 355-360, 2020 06.
Article En | MEDLINE | ID: mdl-32291967

Bacteria are known to communicate with each other through signalling molecules that regulate gene expression within the population. However, the way in which hydrophobic signals are released and transmitted among bacterial population is not well understood. Recent studies show that membrane vesicles (MVs) are involved in delivering hydrophobic signals, such as in N-hexadecanoyl-l-homoserine lactone (C16-HSL) signalling in Paracoccus denitrificans Pd1222. In this study, we identified the AHLs produced in Paracoccus aminophilus JCM7686, Paracoccus aminovorans NBRC16711, Paracoccus thiocyanatus JCM20756, Paracoccus versutus JCM20754 and Paracoccus yeei ATCC BAA-599, and show that the main AHL produced in all the strains is C16-HSL. Our results show that these Paracoccus species also release MVs that carry C16-HSL, but at different proportions. Most of the strains carry C16-HSL in MVs, while in P. aminophilus JCM7686, very little C16-HSL was detected in MVs, but was found in other fractions of the supernatant. Given the utilization of a common signal, we showed that these Paracoccus species can share signals with P. denitrificans Pd1222, and examined the role of MVs in signalling. Our study provides new insights into the way in which bacteria communicate using hydrophobic signals.


Acyl-Butyrolactones/metabolism , Extracellular Vesicles , Paracoccus/metabolism , Quorum Sensing , Biological Transport , Microbial Interactions , Paracoccus denitrificans/metabolism
...