Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.932
1.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Article En | MEDLINE | ID: mdl-38766857

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Adipocytes , Antigens, Neoplasm , Breast Neoplasms , Carbonic Anhydrase IX , Cell Movement , Colonic Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Leptin , Paracrine Communication , Humans , Carbonic Anhydrase IX/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Antigens, Neoplasm/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leptin/metabolism , Cell Line, Tumor , Animals , Obesity/metabolism , Culture Media, Conditioned/pharmacology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Mice
2.
Nat Commun ; 15(1): 4061, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744897

Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.


Cellular Senescence , Cytosol , DNA Damage , Paracrine Communication , Telomere , Cellular Senescence/genetics , Animals , Telomere/metabolism , Telomere/genetics , Mice , Cytosol/metabolism , DNA/metabolism , Transcription, Genetic , Mice, Knockout , Humans , Extracellular Vesicles/metabolism , Genomic Instability , Aging/genetics , Aging/metabolism , Oxidative Stress , Mice, Inbred C57BL
3.
Exp Dermatol ; 33(5): e15093, 2024 May.
Article En | MEDLINE | ID: mdl-38742821

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Adaptor Proteins, Signal Transducing , Cellular Senescence , Fibroblasts , Intercellular Signaling Peptides and Proteins , Melanins , Melanocytes , Paracrine Communication , Skin Aging , Transcription Factors , YAP-Signaling Proteins , Fibroblasts/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Humans , Melanocytes/metabolism , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Melanins/metabolism , Melanins/biosynthesis , Wnt Signaling Pathway , Dermis/cytology , Cells, Cultured , Melanogenesis
4.
Nat Commun ; 15(1): 3580, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678032

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.


E2F1 Transcription Factor , E2F4 Transcription Factor , Neoplastic Stem Cells , Pancreatic Neoplasms , Paracrine Communication , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , E2F4 Transcription Factor/metabolism , E2F4 Transcription Factor/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Female , Cell Proliferation , Mice , Signal Transduction , Drug Resistance, Neoplasm/genetics
5.
J Endocrinol ; 261(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593829

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.


Glucagon-Secreting Cells , Glucagon , Paracrine Communication , Urocortins , Animals , Urocortins/metabolism , Urocortins/genetics , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Mice , Glucagon/metabolism , Glucose/metabolism , Calcium/metabolism , Male , Mice, Inbred C57BL , Cyclic AMP/metabolism , Somatostatin/pharmacology , Somatostatin/metabolism
6.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672477

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
7.
Nature ; 628(8008): 604-611, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538784

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Calcitonin Gene-Related Peptide , Macrophages , Neutrophils , Nociceptors , Wound Healing , Animals , Mice , Autocrine Communication , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Efferocytosis , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Muscle, Skeletal , NAV1.8 Voltage-Gated Sodium Channel/deficiency , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nociceptors/metabolism , Paracrine Communication , Peripheral Nervous System Diseases/complications , Receptor Activity-Modifying Protein 1/metabolism , Regeneration/drug effects , Skin , Thrombospondin 1/metabolism , Wound Healing/drug effects , Wound Healing/immunology , Humans , Male , Female
8.
Cell Mol Gastroenterol Hepatol ; 17(6): 887-906, 2024.
Article En | MEDLINE | ID: mdl-38311169

BACKGROUND & AIMS: Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS: We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS: MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS: We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.


Autocrine Communication , Hepatic Stellate Cells , Liver Cirrhosis , Paracrine Communication , Ribonucleases , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Ribonucleases/metabolism , Ribonucleases/genetics , Male , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Transforming Growth Factor beta1/metabolism , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Liver/pathology , Liver/metabolism
9.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Article En | MEDLINE | ID: mdl-38369645

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Brain , Cricetulus , Natriuretic Peptides , Animals , Brain/metabolism , Natriuretic Peptides/metabolism , CHO Cells , Receptors, Atrial Natriuretic Factor/metabolism , Paracrine Communication , Ligands , Anguilla/metabolism , Endocrine System/metabolism
10.
J Cell Physiol ; 239(4): e31202, 2024 Apr.
Article En | MEDLINE | ID: mdl-38291718

In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.


Autocrine Communication , Cell Differentiation , Exosomes , Paracrine Communication , Sertoli Cells , Spermatogonia , Animals , Male , Mice , Cell Differentiation/physiology , Exosomes/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mice, Inbred ICR , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism
11.
Lab Chip ; 24(3): 537-548, 2024 01 30.
Article En | MEDLINE | ID: mdl-38168806

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.


Cell Communication , Cell Culture Techniques , Humans , Coculture Techniques , Paracrine Communication , Lab-On-A-Chip Devices
12.
Ecotoxicol Environ Saf ; 271: 115994, 2024 Feb.
Article En | MEDLINE | ID: mdl-38262094

Chronic exposure to crystalline silica (CS) contributes to pulmonary fibrosis. Airway epithelium dysfunction and fibroblast activation have both been recognized as pivotal players, alongside disturbances in ferroptosis and glycolysis reprogramming. However, the mechanisms involved remain unclear. In this study, we investigated the crosstalk between airway epithelium and fibroblast in the context of CS-induced pulmonary fibrosis. CS was employed in vivo and the in vitro co-culture system of airway epithelium and fibroblast. Spatial transcriptome analysis of CS-induced fibrotic lung tissue was conducted as well. Results showed that epithelium ferroptosis caused by CS enhanced TGFß1-induced fibroblast activation through paracrine signaling. tPA was further identified to be the central mediator that bridges epithelium ferroptosis and fibroblast activation. And increased fibroblast glycolysis reprogramming was evidenced to promote fibroblast activation. By inhibition of epithelium ferroptosis or silencing tPA of airway epithelium, fibroblast AMPK phosphorylation was inhibited. Moreover, we revealed that tPA secreted by ferroptotic epithelium transmits paracrine signals to fibroblasts by governing glycolysis via p-AMPK/AMPK mediated Glut1 accumulation. Collectively, our study demonstrated the regulation of airway epithelium ferroptosis on fibroblast activation in CS-induced pulmonary fibrosis, which would shed light on the complex cellular crosstalk within pulmonary fibrosis and identify potential therapeutic targets.


Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Silicon Dioxide/toxicity , Paracrine Communication , AMP-Activated Protein Kinases , Epithelium , Fibroblasts , Glycolysis
13.
Aging Dis ; 15(1): 369-389, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37307823

Patients with cholangiocarcinoma (CCA) with lymph node metastasis (LNM) have the worst prognosis, even after complete resection; however, the underlying mechanism remains unclear. Here, we established CAF-derived PDGF-BB as a regulator of LMN in CCA. Proteomics analysis revealed upregulation of PDGF-BB in CAFs derived from patients with CCA with LMN (LN+CAFs). Clinically, the expression of CAF-PDGF-BB correlated with poor prognosis and increased LMN in patients with CCA, while CAF-secreted PDGF-BB enhanced lymphatic endothelial cell (LEC)-mediated lymphangiogenesis and promoted the trans-LEC migration ability of tumor cells. Co-injection of LN+CAFs and cancer cells increased tumor growth and LMN in vivo. Mechanistically, CAF-derived PDGF-BB activated its receptor PDGFR-ß and its downstream ERK1/2-JNK signaling pathways in LECs to promote lymphoangiogenesis, while it also upregulated the PDGFR-ß-GSK-P65-mediated tumor cell migration. Finally, targeting PDGF-BB/PDGFR-ß or the GSK-P65 signaling axis prohibited CAF-mediated popliteal lymphatic metastasis (PLM) in vivo. Overall, our findings revealed that CAFs promote tumor growth and LMN via a paracrine network, identifying a promising therapeutic target for patients with advanced CCA.


Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Humans , Becaplermin , Lymphatic Metastasis , Cancer-Associated Fibroblasts/metabolism , Paracrine Communication , Receptor, Platelet-Derived Growth Factor beta/genetics , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/metabolism
14.
Nature ; 625(7993): 126-133, 2024 Jan.
Article En | MEDLINE | ID: mdl-38123680

Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.


Pseudopodia , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt Proteins , Zebrafish , Animals , Gastrula/cytology , Gastrula/embryology , Gastrula/metabolism , Ligands , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , Zebrafish/embryology , Zebrafish/metabolism , Cell Polarity , Cell Movement , Pseudopodia/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Paracrine Communication
15.
Cell Rep ; 42(12): 113586, 2023 12 26.
Article En | MEDLINE | ID: mdl-38113139

Melanoma is the deadliest form of skin cancer due to its propensity to metastasize. It arises from melanocytes, which are attached to keratinocytes within the basal epidermis. Here, we hypothesize that, in addition to melanocyte-intrinsic modifications, dysregulation of keratinocyte functions could initiate early-stage melanoma cell invasion. We identified the lysolipid sphingosine 1-phosphate (S1P) as a tumor paracrine signal from melanoma cells that modifies the keratinocyte transcriptome and reduces their adhesive properties, leading to tumor invasion. Mechanistically, tumor cell-derived S1P reduced E-cadherin expression in keratinocytes via S1P receptor dependent Snail and Slug activation. All of these effects were blocked by S1P2/3 antagonists. Importantly, we showed that epidermal E-cadherin expression was inversely correlated with the expression of the S1P-producing enzyme in neighboring tumors and the Breslow thickness in patients with early-stage melanoma. These findings support the notion that E-cadherin loss in the epidermis initiates the metastatic cascade in melanoma.


Melanoma , Humans , Melanoma/pathology , Sphingolipids/metabolism , Paracrine Communication , Keratinocytes/metabolism , Cadherins/metabolism , Sphingosine/metabolism , Lysophospholipids/metabolism
17.
Tissue Eng Part A ; 29(21-22): 594-603, 2023 11.
Article En | MEDLINE | ID: mdl-37847176

Immune-related applications of mesenchymal stromal cells (MSCs) in cell therapy seek to exploit immunomodulatory paracrine signaling pathways to reduce inflammation. A key MSC therapeutic challenge is reducing patient outcome variabilities attributed to insufficient engraftment/retention of injected heterogenous MSCs. To address this, we propose directly transplantable human single-cell-derived clonal bone marrow MSC (hcBMSC) sheets. Cell sheet technology is a scaffold-free tissue engineering strategy enabling scalable production of highly engraftable cell constructs retaining endogenous cell-cell and cell-matrix interactions, important to cell function. cBMSCs, as unique MSC subset populations, facilitate rational selection of therapeutically relevant MSC clones from donors. Here, we combine human cBMSCs with cell sheet technology, demonstrating cell sheet fabrication as a method to significantly upregulate expression of immunomodulatory molecules interleukin (IL)-10, indoleamine 2,3-dioxygenase (IDO-1), and prostaglandin E synthase 2 (PTGES2) across GMP-grade hcBMSC lines and whole human bone marrow-derived MSCs compared to respective conventional cell suspensions. When treated with carbenoxolone, a gap junction inhibitor, cell sheets downregulate IL-10 and IDO-1 expression, implicating functional roles for intercellular sheet interactions. Beyond producing directly transferable multicellular hcBMSC constructs, cell sheet technology amplifies hcBMSC expression of immunomodulatory factors important to therapeutic action. In addition, this work demonstrates the importance of cell-cell interactions as a tissue engineering design criterion to enhance consistent MSC functions.


Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Immunomodulation , Bone Marrow Cells , Tissue Engineering , Paracrine Communication
18.
J Cell Mol Med ; 27(23): 3692-3705, 2023 12.
Article En | MEDLINE | ID: mdl-37830980

Perineural invasion (PNI) has emerged as a key pathological feature and be considered as a poor prognostic factor in cervical cancer. However, the underlying molecular mechanisms are largely unknown. Here, PNI status of 269 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) samples were quantified by using whole-slide diagnostic images obtained from The Cancer Genome Atlas. Integrated analyses revealed that PNI was an indicative marker of poorer disease-free survival for CESC patients. Among the differentially expressed genes, ADCYAP1 were identified. Clinical specimens supported that high expression of PACAP (encoded by ADCYAP1) contributed to PNI in CESC. Mechanistically, PACAP, secreted from cervical cancer cells, reversed myelin differentiation of Schwann cells (SCs). Then, dedifferentiated SCs promoted PNI by producing chemokine FGF17 and by degrading extracellular matrix through secretion of Cathepsin S and MMP-12. In conclusion, this study identified PACAP was associated with PNI in cervical cancer and suggested that tumour-derived PACAP reversed myelin differentiation of SCs to aid PNI.


Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Differentiation , Neoplasm Invasiveness/pathology , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Schwann Cells/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Paracrine Communication/genetics
19.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37686154

The mammary gland is composed of epithelial tissue forming ducts and lobules, and the stroma, composed of adipocytes, connective tissue, and other cell types. The stromal microenvironment regulates mammary gland development by paracrine and cell-cell interactions. In the present study, primary cultures of bovine mammary epithelial cells (bMEC) and bovine adipose-derived stem cells (bASC) subjected to adipogenic differentiation were used to investigate the influence of paracrine factors secreted by preadipocytes and adipocytes on bMEC development. Four types of conditioned media (CM) were collected from undifferentiated preadipocytes (preA) and adipocytes on days: 8, 12, 14 of differentiation. Next, bMEC were cultured for 24 h in CM and cell viability, apoptosis, migratory activity, ability to form spheroids on Matrigel, and secretory activity (alpha S1-casein concentration) were evaluated. CM derived from fully differentiated adipocytes (12 d and 14 d) significantly decreased the number of apoptotic cells in bMEC population and increased the size of spheroids formed by bMEC on Matrigel. CM collected from preadipocytes significantly enhanced bMEC's migration, and stimulated bMEC to produce alpha S1-casein, but only in the presence of prolactin. These results confirm that preadipocytes and adipocytes are important components of the stroma, providing paracrine factors that actively regulate the development of bovine mammary epithelium.


Caseins , Paracrine Communication , Cattle , Animals , Epithelial Cells , Adipocytes , Epithelium , Culture Media, Conditioned/pharmacology
20.
Stem Cell Res Ther ; 14(1): 258, 2023 09 19.
Article En | MEDLINE | ID: mdl-37726799

Stromal vascular fraction (SVF) cells, and the adipose-derived mesenchymal stem cells they contain, have shown enhanced wound healing in vitro and in vivo, yet their clinical application has been limited. In this regard, understanding the mechanisms that govern SVF-enhanced wound healing would improve their application in the clinic. Here, we show that the SVF cells and keratinocytes engage in a paracrine crosstalk during wound closure, which results in a new cytokine profile that is distinct from the cytokines regularly secreted by either cell type on their own. We identify 11 cytokines, 5 of which are not regularly secreted by the SVF cells, whose expressions are significantly increased during wound closure by the keratinocytes. This new cytokine profile could be used to accelerate wound closure and initiate re-epithelialization without the need to obtain the SVF cells from the patient.


Mesenchymal Stem Cells , Stromal Vascular Fraction , Humans , Keratinocytes , Paracrine Communication , Cytokines
...