Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
1.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38700925

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Paramyxoviridae Infections , Paramyxovirinae , Paramyxovirinae/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Mammals , China , Phylogeny , Genome, Viral , Host Specificity
2.
J Virol ; 98(1): e0165423, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38169290

Jeilongviruses are emerging single-stranded negative-sense RNA viruses in the Paramyxoviridae family. Tailam paramyxovirus (TlmPV) is a Jeilongvirus that was identified in 2011. Very little is known about the mechanisms that regulate viral replication in these newly emerging viruses. Among the non-structural viral proteins of TlmPV, the C protein is predicted to be translated from an open reading frame within the phosphoprotein gene through alternative translation initiation. Though the regulatory roles of C proteins in virus replication of other paramyxoviruses have been reported before, the function of the TlmPV C protein and the relevant molecular mechanisms have not been reported. Here, we show that the C protein is expressed in TlmPV-infected cells and negatively modulates viral RNA replication. The TlmPV C protein interacts with the P protein, negatively impacting the interaction between N and P, resulting in inhibition of viral RNA replication. Deletion mutagenesis studies indicate that the 50 amino-terminal amino acid residues of the C protein are dispensable for its inhibition of virus RNA replication and interaction with the P protein.IMPORTANCETailam paramyxovirus (TlmPV) is a newly identified paramyxovirus belonging to the Jeilongvirus genus, of which little is known. In this work, we confirmed the expression of the C protein in TlmPV-infected cells, assessed its function, and defined a potential mechanism of action. This is the first time that the existence of a Jeilongvirus C protein has been confirmed and its role in viral replication has been reported.


Paramyxovirinae , Viral Proteins , Virus Replication , Paramyxovirinae/genetics , Paramyxovirinae/physiology , RNA, Viral/genetics , Viral Proteins/genetics , Animals , Cricetinae , Cell Line
3.
PLoS One ; 18(11): e0294173, 2023.
Article En | MEDLINE | ID: mdl-37963152

Paramyxoviruses are negative-sense, single-stranded RNA viruses that are associated with numerous diseases in humans and animals. J paramyxovirus (JPV) was first isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions in Australia in 1972. In 2016, JPV was classified into the newly established genus Jeilongvirus. Novel jeilongviruses are being discovered worldwide in wildlife populations. However, the effects of jeilongvirus infection on host gene expression remains uncharacterized. To address this, cellular RNA from JPV-infected mouse fibroblasts was collected at 2, 4, 8, 12, 16, 24, and 48 hours post-infection (hpi) and were sequenced using single-end 75 base pairs (SE75) sequencing chemistry on an Illumina NextSeq platform. Differentially expressed genes (DEGs) between the virus-infected replicates and mock replicates at each timepoint were identified using the Tophat2-Cufflinks-Cuffdiff protocol. At 2 hpi, 11 DEGs were identified in JPV-infected cells, while 1,837 DEGs were detected at 48 hpi. A GO analysis determined that the genes at the earlier timepoints were involved in interferon responses, while there was a shift towards genes that are involved in antigen processing and presentation processes at the later timepoints. At 48 hpi, a KEGG analysis revealed that many of the DEGs detected were involved in pathways that are important for immune responses. qRT-PCR verified that Rtp4, Ifit3, Mx2, and Stat2 were all upregulated during JPV infection, while G0s2 was downregulated. After JPV infection, the expression of inflammatory and antiviral factors in mouse fibroblasts changes significantly. This study provides crucial insight into the different arms of host immunity that mediate Jeilongvirus infection. Understanding the pathogenic mechanisms of Jeilongvirus will lead to better strategies for the prevention and control of potential diseases that may arise from this group of viruses.


Paramyxoviridae Infections , Paramyxovirinae , Humans , Animals , Mice , Paramyxovirinae/genetics , Paramyxoviridae/genetics , Paramyxoviridae Infections/genetics , Gene Expression , Australia , Gene Expression Profiling , Gene Expression Regulation
4.
J Virol ; 97(1): e0180222, 2023 01 31.
Article En | MEDLINE | ID: mdl-36521070

Tailam paramyxovirus (TlmPV) was identified in Sikkim Rats in Hong Kong, China in 2011. Its negative sense RNA genome is similar to J paramyxovirus (JPV) and Beilong paramyxovirus (BeiPV), the prototypes of the recently established genus Jeilongvirus. TlmPV genome is predicted to have eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G/X-L-5'. The predicted size of the TlmPV G protein is 1,052 amino acid (aa) residues and much larger than G proteins of typical paramyxoviruses, which are often less than 800 aa. In addition to G open reading frame (ORF) in the G gene, another ORF, termed ORF-X exists in the G gene transcript. Similar ORF-X exists in JPV and BeiPV G gene, but their expression in virus-infected cells has not been confirmed. In this study, we generated infectious TlmPV using a newly developed reverse genetics system. We have found that the G protein of TlmPV is truncated in cultured cells: stop codons emerged in the G open reading frame, resulting in deletions of amino acid residues beyond residue 732. We have obtained infectious TlmPV lacking the C-terminal 307 aa (rTlmPV-G745) and TlmPV lacking the C-terminal 306 aa and the ORF-X (rTlmPV-GΔ746-X). The recombinant TlmPVs lacking the C-terminal 300 aa reach a higher peak viral titer and have improved genome stability in tissue cultured cells. The work indicates that the C-terminal of the G protein of TlmPV and ORF-X are not required for replication in tissue culture cells, and the deletion of the C-terminal confers a growth advantage in tissue culture cells. IMPORTANCE TlmPV is a member of the recently established genus Jeilongvirus. TlmPV encodes a large G protein and its G gene contains ORF-X. In this work, infectious TlmPV was recovered using reverse genetics. Using this system, we have demonstrated that 300 aa of C-terminal of G and the ORF-X are not required for viral replication in tissue culture cells.


GTP-Binding Proteins , Open Reading Frames , Paramyxovirinae , Virus Replication , Animals , Rats , Cells, Cultured , GTP-Binding Proteins/genetics , Paramyxovirinae/genetics , Paramyxovirinae/physiology
5.
Viruses ; 14(1)2022 01 12.
Article En | MEDLINE | ID: mdl-35062341

Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed "C", are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.


Immunity, Innate/immunology , Paramyxoviridae Infections/immunology , Paramyxovirinae/physiology , Phosphoproteins/immunology , Viral Proteins/immunology , Virus Replication/physiology , Animals , Defective Interfering Viruses , Genome, Viral , Humans , Immune Evasion , Inflammasomes , Open Reading Frames , Paramyxovirinae/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phylogeny , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly
6.
Zoonoses Public Health ; 69(2): 117-135, 2022 03.
Article En | MEDLINE | ID: mdl-34817117

Bat paramyxoviruses (PmV) are a diverse group of viruses and include zoonotic viruses such as henipaviruses. Members of this group in other continents have been associated with severe respiratory and neurological infections in animals and humans. Furthermore, despite the richness of diverse bat species that can transmit this virus in African countries like Nigeria, there is very scanty information as to the presence and co-evolution of paramyxoviruses in bats. There is a need for continuous surveillance of zoonotic viruses and their biological reservoirs as this will help in the prevention and management of pathogens' spillovers. This study detected novel paramyxoviruses in Chaerephon nigeriae bat species found in Badagry, Lagos. Phylogenetic analyses of paramyxovirus sequences' co-evolution with frugivorous and insectivorous bats circulating in African countries were also performed using sequences of African origin available in the Database of Bat-Associated Viruses (DBatVir: http://www.mgc.ac.cn/DBatVir/). Oral swabs (n = 18) and blood samples (n = 32) were collected from C. nigeriae bats in Badagry, Lagos. The L gene of bat paramyxovirus was detected in all oral swabs using PCR techniques. Six of the amplicons were successfully sequenced. Estimated phylogenies placed the sequences in close relationship with those isolated from insectivorous bats. Phylogenetic analyses of previously sequenced isolates in the African region showed the likelihood of different co-evolution mechanisms of paramyxoviruses with frugivorous bats compared with insectivorous bats. This may be due to codon usage bias of the L gene. Spatial distribution of paramyxoviruses in African countries showed limited ongoing surveillance of this virus in the continent, especially in southern and northern countries. Extensive surveillance of paramyxoviruses with possible zoonotic potentials among bat species in the continent is recommended. This will provide further insights into co-evolution as well as prevent possible spillover into the human population.


Chiroptera , Paramyxovirinae , Animals , Nigeria/epidemiology , Paramyxoviridae/genetics , Paramyxovirinae/genetics , Phylogeny
7.
Viruses ; 15(1)2022 12 23.
Article En | MEDLINE | ID: mdl-36680089

J paramyxovirus (JPV) is a rodent-borne Jeilongvirus isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions trapped in the 1972 in northern Queensland, Australia. The JPV antibodies have been detected in wild mice, wild rats, pigs, and human populations in Australia. Here, by next-generation sequencing (NGS), we detected JPV from M. musculus in Shandong Province of China. Molecular detection of JPV was performed to survey to survey the infection among 66 species of wild small mammals collected from six eco-climate regions in China by applying JPV specific RT-PCR and sequencing. Altogether, 21 out of 3070 (0.68%) wild small mammals of four species were positive for JPV, including 5.26% (1/19) of Microtus fortis, 3.76% (17/452) of M. musculus, 1.67% (1/60) of Apodemus peninsulae, and 0.48% (2/421) of Apodemus agrarius, which captured three eco-climate regions of China (northeastern China, northern China, and Inner Mongolia-Xinjiang). Sequence analysis revealed the currently identified JPV was clustered with other 14 Jeilongvirus members, and shared 80.2% and 89.2% identity with Australia's JPV partial RNA polymerase (L) and glycoprotein (G) genes, respectively. Phylogenetic analysis demonstrated the separation of three lineages of the current JPV sequences. Our results show three new hosts (A. agrarius, A. peninsulae, and M. fortis) for JPV, most of which were widely distributed in China, and highlight the potential zoonotic transmission of JPV in humans. The detection of JPV in wild small mammals in China broaden the viral diversity, geographical distribution, and reservoir types of JPV. Future studies should prioritize determining the epidemiological characteristics of JPV, so that potential risks can be mitigated.


Host Specificity , Paramyxovirinae , Humans , Mice , Rats , Animals , Swine , Phylogeny , Paramyxovirinae/genetics , Mammals , Paramyxoviridae , Murinae , Arvicolinae , Genetic Variation , China/epidemiology
8.
Viruses ; 13(12)2021 12 09.
Article En | MEDLINE | ID: mdl-34960734

Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.


Nucleocapsid/chemistry , Paramyxovirinae/metabolism , Gene Expression Regulation, Viral , Humans , Nucleocapsid/genetics , Nucleocapsid/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Paramyxoviridae Infections/virology , Paramyxovirinae/chemistry , Paramyxovirinae/classification , Paramyxovirinae/genetics , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism
9.
Viruses ; 13(12)2021 12 10.
Article En | MEDLINE | ID: mdl-34960748

All paramyxoviruses, which include the mumps virus, measles virus, Nipah virus, Newcastle disease virus, and Sendai virus, have non-segmented single-stranded negative-sense RNA genomes. These RNA genomes are enwrapped throughout the viral life cycle by nucleoproteins, forming helical nucleocapsids. In addition to these helical structures, recombinant paramyxovirus nucleocapsids may occur in other assembly forms such as rings, clam-shaped structures, and double-headed nucleocapsids; the latter two are composed of two single-stranded helices packed in a back-to-back pattern. In all of these assemblies, the neighboring nucleoprotein protomers adopt the same domain-swapping mode via the N-terminal arm, C-terminal arm, and recently disclosed N-hole. An intrinsically disordered region in the C-terminal domain of the nucleoproteins, called the N-tail, plays an unexpected role in regulating the transition among the different assembly forms that occurs with other viral proteins, especially phosphoprotein. These structures, together with the helical nucleocapsids, significantly enrich the structural diversity of the paramyxovirus nucleocapsids and help explain the functions of these diverse assemblies, including RNA genome protection, transcription, and replication, as well as encapsulation.


Nucleocapsid Proteins/chemistry , Nucleocapsid/chemistry , Paramyxovirinae/chemistry , Models, Molecular , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Paramyxovirinae/classification , Paramyxovirinae/genetics , Protein Conformation , Protein Domains , Protein Structure, Quaternary , Protein Subunits/chemistry
10.
Viruses ; 13(10)2021 10 07.
Article En | MEDLINE | ID: mdl-34696450

Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (3'-N-P-M-F-G-L-5') with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews.


Henipavirus/classification , Henipavirus/genetics , Paramyxovirinae/classification , Paramyxovirinae/genetics , Phylogeny , Shrews/virology , Animals , Biodiversity , Birds/virology , Chiroptera/virology , Fishes/virology , Henipavirus/isolation & purification , High-Throughput Nucleotide Sequencing , Interferons , Paramyxovirinae/isolation & purification , RNA Viruses/classification , Reptiles/virology , Republic of Korea , Rodentia/virology , Viral Zoonoses/virology
11.
Viruses ; 13(8)2021 08 20.
Article En | MEDLINE | ID: mdl-34452518

The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection.


Chiroptera/urine , Chiroptera/virology , Paramyxovirinae/metabolism , RNA, Viral/metabolism , Animals , Disease Reservoirs/virology , Paramyxovirinae/classification , Paramyxovirinae/genetics , Paramyxovirinae/isolation & purification , RNA, Viral/genetics , Seasons , Urine/virology , Virus Shedding
12.
Viruses ; 13(8)2021 08 20.
Article En | MEDLINE | ID: mdl-34452523

Bats have been identified as the natural hosts of several emerging zoonotic viruses, including paramyxoviruses, such as Hendra and Nipah viruses, that can cause fatal disease in humans. Recently, African fruit bats with populations that roost in or near urban areas have been shown to harbour a great diversity of paramyxoviruses, posing potential spillover risks to public health. Understanding the circulation of these viruses in their reservoir populations is essential to predict and prevent future emerging diseases. Here, we identify a high incidence of multiple paramyxoviruses in urine samples collected from a closed captive colony of circa 115 straw-coloured fruit bats (Eidolon helvum). The sequences detected have high nucleotide identities with those derived from free ranging African fruit bats and form phylogenetic clusters with the Henipavirus genus, Pararubulavirus genus and other unclassified paramyxoviruses. As this colony had been closed for 5 years prior to this study, these results indicate that within-host paramyxoviral persistence underlies the role of bats as reservoirs of these viruses.


Chiroptera/virology , Disease Reservoirs/virology , Paramyxovirinae/physiology , Animals , Chiroptera/growth & development , Chiroptera/urine , Female , Male , Paramyxovirinae/classification , Paramyxovirinae/genetics , Paramyxovirinae/isolation & purification , Phylogeny , Urine/virology
13.
Viruses ; 13(4)2021 03 26.
Article En | MEDLINE | ID: mdl-33810446

Diverse paramyxoviruses have coevolved with their bat hosts, including fruit bats such as flying foxes (Chiroptera: Pteropodidae). Several of these viruses are zoonotic, but the diversity and distribution of Paramyxoviridae are poorly understood. We screened pooled feces samples from three Pteropus vampyrus colonies and assayed tissues, rectal swabs, and oral swabs from 95 individuals of 23 pteropodid species sampled at 17 sites across the Indonesian archipelago with a conventional paramyxovirus PCR; all tested negative. Samples from 43 individuals were screened with next generation sequencing (NGS), and a single Pteropus vampyrus collected near Flores had Tioman virus sequencing reads. Tioman virus is a bat-borne virus in the genus Pararubulavirus with prior evidence of spillover to humans. This work expands the known range of Tioman virus, and it is likely that this isolated colony likely has sustained intergenerational transmission over a long period.


Chiroptera/virology , Feces/virology , Paramyxoviridae Infections/veterinary , Paramyxovirinae/classification , Paramyxovirinae/genetics , Animals , High-Throughput Nucleotide Sequencing , Humans , Indonesia , Paramyxoviridae Infections/transmission , Paramyxovirinae/isolation & purification
14.
Infect Genet Evol ; 91: 104809, 2021 07.
Article En | MEDLINE | ID: mdl-33727141

Eurasian collared doves (Streptopelia decaocto) were introduced into Florida in the 1980s and have since established populations throughout the continental United States. Pigeon paramyxovirus-1 (PPMV-1), a species-adapted genotype VI Avian orthoavulavirus 1, has caused periodic outbreaks among collared doves in the U.S. since 2001 with outbreaks occasionally involving native doves. In California, PPMV-1 mortality events were first documented in Riverside County in 2014 with subsequent outbreaks in 23 additional counties from southern to northern California between 2015 and 2019. Affected collared doves exhibited torticollis and partial paralysis. Pale kidneys were frequently visible on gross necropsy (65.4%; 51/78) while lymphoplasmacytic interstitial nephritis often with acute tubular necrosis (96.0%; 24/25) and pancreatic necrosis (80.0%; 20/25) were common findings on histopathology. In total, PPMV-1 was confirmed by rRT-PCR and sequence analysis from oropharyngeal and/or cloacal swabs in 93.0% (40/43) of the collared doves tested from 16 California counties. In 2017, Avian orthoavulavirus 1 was confirmed in a native mourning dove (Zenaida macroura) found dead during a PPMV-1 outbreak in collared doves by rRT-PCR from formalin-fixed paraffin-embedded (FFPE) tissues, after the initial rRT-PCR from swabs failed to detect the virus. Molecular sequencing of the fusion protein of isolates collected from collared doves during outbreaks in 2014, 2016, and 2017 identified two distinct subgenotypes, VIa and VIn. Subgenotype VIn has been primarily isolated from collared doves in the southern U.S., while VIa has been isolated from mixed avian species in the northeastern U.S., indicating two independent introductions into California. While populations of collared doves are not expected to be substantially impacted by this disease, PPMV-1 may pose a threat to already declining populations of native columbids. This threat could be assessed by monitoring native and non-native columbids for PPMV-1. Based on our study, swab samples may not be sufficient to detect infection in native columbids and may require the use of non-traditional diagnostic approaches, such as FFPE tissues, to ensure virus detection.


Bird Diseases/epidemiology , Columbidae , Paramyxoviridae Infections/veterinary , Paramyxovirinae/isolation & purification , Age Factors , Animals , Bird Diseases/mortality , Bird Diseases/virology , California/epidemiology , Female , Introduced Species , Male , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/mortality , Paramyxoviridae Infections/virology , Paramyxovirinae/genetics , Prevalence , Seasons , Sex Factors
15.
Infect Genet Evol ; 91: 104777, 2021 07.
Article En | MEDLINE | ID: mdl-33631368

As an economically important poultry pathogen, avian paramyxovirus serotype 4 (APMV-4) frequently reported and isolated from domestic and wild birds particularly waterfowls worldwide. However, evolutionary dynamics of APMV-4 based on genomic characteristics is lacking. In this study, APMV-4 strain designated JX-G13 was isolated from oropharyngeal and cloacal swab samples of wild birds in China. Phylogenetic analysis revealed APMV-4 strains were divided into four genetic genotypes and China isolates were mainly clustered into Genotype I. The MCMC tree indicated that APMV-4 diverged about 104 years ago with the evolutionary rate of 1.2927 × 10-3 substitutions/site/year. BSP analysis suggested that the effective population size of APMV-4 exhibited a steady state and decreased slowly after 2013. The F gene of APMV-4 was considered relatively conserved among isolates based on nucleotide diversity analysis. Although the F gene was under purifying selection, two positions (5 and 21) located in 3'-UTR were subject to positive selection. Our study firstly presented the evolutionary assessments on the genetic diversity of circulating APMV-4 from wild birds and domestic poultry.


Bird Diseases/virology , Evolution, Molecular , Genotype , Paramyxovirinae/genetics , Animals , China , Cloaca/virology , Oropharynx/virology , Phylogeny
16.
Am J Trop Med Hyg ; 104(3): 1106-1110, 2021 Jan 18.
Article En | MEDLINE | ID: mdl-33534762

Bats are often consumed by some ethnic groups in Nigeria despite association of bats with many important emerging viruses. More than 300 bats representing eight species were captured during 2010-2011 in eight locations of northern Nigeria. Available fecal swabs (n = 95) were screened for the presence of arenaviruses, CoVs, paramyxoviruses (PMVs), reoviruses, rhabdoviruses, and influenza viruses using generic reverse transcription-polymerase chain reaction assays. Here, we document the detection of CoVs, PMVs, reoviruses, and rotaviruses (RVs) in Nigerian bats. The Nigerian bat CoVs are grouped within other bat SARS-CoV-like viruses identified from Ghana in a sister clade next to the human SARS-CoV clade. The phylogenetic analysis indicated a broad range of RVs present in Nigerian bats, some cluster with human RVs and some represent novel species. Our study adds that continuing global surveillance for viruses in bats to understand their origin, adaptation, and evolution is important to prevent and control future zoonotic disease outbreaks.


Chiroptera/virology , RNA Viruses/classification , RNA Viruses/genetics , Virus Diseases/epidemiology , Virus Diseases/veterinary , Zoonoses/transmission , Animals , Coronavirus/genetics , Coronavirus/isolation & purification , Evolution, Molecular , Genome, Viral , Humans , Nigeria , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/isolation & purification , Paramyxovirinae/genetics , Paramyxovirinae/isolation & purification , Phylogeny , Phylogeography , RNA Viruses/isolation & purification , Rotavirus/genetics , Rotavirus/isolation & purification , Zoonoses/epidemiology
17.
Viruses ; 12(11)2020 11 16.
Article En | MEDLINE | ID: mdl-33207797

Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.


Genetic Therapy , Genetic Vectors , Genome, Viral , Lentivirus/genetics , Viral Envelope Proteins/genetics , Genomics , Humans , Molecular Biology , Paramyxovirinae/genetics , Paramyxovirinae/metabolism , Rhabdoviridae/genetics , Rhabdoviridae/metabolism , Togaviridae/genetics , Togaviridae/metabolism , Transduction, Genetic , Viral Envelope Proteins/metabolism , Virus Internalization
18.
PLoS Pathog ; 16(11): e1008972, 2020 11.
Article En | MEDLINE | ID: mdl-33152032

Paramyxo- and filovirus nucleocapsids (NCs) have bipartite promoters at their 3' ends to initiate RNA synthesis. The 2 elements, promoter element 1 (PE1) and promoter element 2 (PE2), are separated by a spacer region that must be exactly a multiple of 6 nucleotides (nt) long. Paramyxovirus NCs have 13 nucleoprotein (NP) subunits/turn, such that PE1 and PE2 are juxtaposed on the same face of the NC helix, for concerted recognition by the viral polymerase. Ebola virus (EBOV) NCs, in contrast, have 25 to 28 subunits/turn, meaning that PE1 and PE2 cannot be juxtaposed. However, there is evidence that the number of subunits/turn at the 3' end of the EBOV NC is variable. We propose a paramyxovirus-like model for EBOV explaining why there are 8 contiguous copies of the PE2 repeat when 3 are sufficient, why expanding this run to 13 further improves minigenome performance, and why there is a limit to the number of hexa-nt that can be inserted in the spacer region.


Ebolavirus/genetics , Genome, Viral/genetics , Hemorrhagic Fever, Ebola/virology , Nucleoproteins/genetics , Paramyxovirinae/genetics , Promoter Regions, Genetic/genetics , Humans , Nucleocapsid/genetics , Sequence Alignment
19.
Pediatr Infect Dis J ; 39(9): e284-e287, 2020 09.
Article En | MEDLINE | ID: mdl-32804465

In a community-based birth cohort of 158 Australian infants followed to age 2 years, the incidence rate of human parainfluenza virus (HPIV) was 0.42 (95% CI = 0.33, 0.54) episodes per child-year with episodes occurring year-round, peaking in the spring season. HPIV-3 was the dominant subtype. Overall, 41% of detections were asymptomatic; only 32% of HPIV episodes led to healthcare contact with 1 hospitalization.


Paramyxoviridae Infections/epidemiology , Paramyxovirinae/genetics , Parturition , Public Health/statistics & numerical data , Respiratory Tract Infections/virology , Seasons , Asymptomatic Infections/epidemiology , Cohort Studies , Female , Humans , Incidence , Infant, Newborn , Male , Nose/virology , Parainfluenza Virus 3, Human/genetics , Parainfluenza Virus 3, Human/metabolism , Paramyxovirinae/classification , Prospective Studies , Queensland/epidemiology , Respiratory Tract Infections/epidemiology
20.
J Equine Vet Sci ; 91: 103149, 2020 08.
Article En | MEDLINE | ID: mdl-32684248

Hendra virus (HeV) is a zoonotic paramyxovirus which causes acute and deadly infection in horses (Equus caballus). It is a rare and unmanaged emerging viral infection in horses which is harbored by bats of the genus Pteropus (Australian flying foxes or fruit bats). The virus is pleomorphic in shape and its genome contains nonsegmented negative-stranded RNA with 18234 nucleotides in length. The virus is transmitted from flying foxes to horses, horse to horse, and horse to humans. Human-to-human transmission of HeV infection is not reported yet. The infection of HeV in horses is highly variable and shows broad range of signs and lesions including distinct respiratory and neurological disorders. Currently, there are no specific antiviral drugs available for the treatment of HeV infection in horses. Vaccination is considered as prime option to prevent HeV infection in horses. A subunit vaccine, called as "Equivac HeV vaccine" has been approved recently for preventing this viral infection in horses. In addition, a plethora of common preventive strategies could help restrict the inter- and intra-species transmission of HeV. Considering the scanty but severe fatality cases of this mystery virus as well as lack of proper attention by veterinary scientists, this review article spotlights not only on the clinical signs, transmission, epidemiology, biology, pathogenesis, and diagnosis of HeV but also the preventive managements of this uncommon infection in horses by vaccination and other precautious strategies.


Chiroptera , Hendra Virus , Henipavirus Infections , Horse Diseases , Paramyxovirinae , Animals , Australia , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Horse Diseases/epidemiology , Horses , Paramyxovirinae/genetics
...