Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.471
Filtrar
1.
PLoS One ; 19(7): e0301942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976699

RESUMEN

Historically, males have frequently been portrayed as the manipulative and deceptive gender, while females are often seen as adopting a coy and passive role. In this context, it is proposed that males use a terminal investment strategy, misleading females about their true poor condition, while females passively opt to mate with these deceptive males. However, we hypothesize that females in suboptimal condition may also engage in a terminal investment strategy by mimicking or enhancing their attractiveness to match that of females in better conditions. We studied this hypothesis in Tenebrio molitor, by subjecting females to three varying doses of lipopolysaccharides of Escherichia coli (LPS; 0.25, 0.5, or 1 mg ml-1), or three doses of the pro-oxidant Paraquat (PQ; 20, 40 or 80 mM), and subsequently assessing their survival and attractiveness to males. The LPS treatments and 20 mM of PQ had no significant effect on the survival or attractiveness of the females. However, females treated with 40 or 80 mM PQ survived fewer days compared to the control group. Those injected with 40 mM were more attractive than their control counterparts, while those treated with 80 mM were less attractive. Since the identical doses of LPS, which induce terminal investment in males, had no effect on females, we suggest sexual dimorphism in terminal investment. Furthermore, similar to males, if the stressor reaches a sufficiently high level, the signal becomes honest. These findings highlight how the quantity of stressors influences support for the terminal investment strategy in both males and females. Notably, this study challenges prevailing notions regarding gender roles in sexual selection, indicating that females, not just males, conceal their poor condition to attract mating partners.


Asunto(s)
Lipopolisacáridos , Conducta Sexual Animal , Femenino , Masculino , Animales , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Lipopolisacáridos/farmacología , Tenebrio/fisiología , Tenebrio/efectos de los fármacos , Paraquat/farmacología
2.
Plant Mol Biol ; 114(4): 87, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023834

RESUMEN

Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H2 production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H2 synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.


Asunto(s)
Glucógeno , Hidrógeno , Paraquat , Fotosíntesis , Synechocystis , Glucógeno/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de los fármacos , Synechocystis/genética , Fotosíntesis/efectos de los fármacos , Hidrógeno/metabolismo , Paraquat/farmacología , Hidroxibutiratos/metabolismo , Transporte de Electrón/efectos de los fármacos , Poliésteres/metabolismo , Polihidroxibutiratos
3.
Plant Physiol Biochem ; 214: 108886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950461

RESUMEN

Methyl viologen (MV), also known as paraquat, is a widely used herbicide but has also been reported as highly toxic to different life forms. The mode of its operation is related to superoxide radical (O2.-) production and consequent oxidative damage. However, besides the damage to key macromolecules, reactive oxygen species (ROS; to which O2.- belongs) are also known as regulators of numerous ion transport systems located at cellular membranes. In this study, we used MV as a tool to probe the role of O2.- in regulating membrane-transport activity and systemic acquired tolerance in halophytic Chenopodium quinoa and glycophytic spinach plants. Both plant species showed growth reduction in terms of reduced shoot length, lower shoot fresh and dry weight, photosynthesis rate, and chlorophyll contents; however, quinoa showed less reduction in growth compared with spinach. This whole plant response was further examined by measuring the ion concentration, gene expression of ion transporters, activation of antioxidants, and osmolyte accumulation. We observed that at the mechanistic level, the differences in growth in response to MV were conferred by at least four complementary physiological mechanisms: (1) higher K+ loss from spinach leaves resulted from higher expression of MV-induced plasma membrane-based depolarization-activated K+ efflux GORK channel, (2) higher activation of high-affinity K+ uptake transporter HAK5 in quinoa, (3) higher antioxidant production and osmolyte accumulation in quinoa as compared with spinach, and (4) maintaining a higher rate of photosynthesis due to higher chlorophyll contents, and efficiency of photosystem II and reduced ROS and MDA contents. Obtained results also showed that MV induced O2.- significantly reduced N contents in both species but with more pronounced effects in glycophytic spinach. Taken together this study has shown the role of O2.- in regulating membrane ion transport and N metabolism in the leaves of halophyte vs. glycophyte in the context of oxidative stress tolerance.


Asunto(s)
Chenopodium quinoa , Homeostasis , Oxidación-Reducción , Fotosíntesis , Potasio , Spinacia oleracea , Superóxidos , Chenopodium quinoa/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/efectos de los fármacos , Superóxidos/metabolismo , Potasio/metabolismo , Clorofila/metabolismo , Paraquat/farmacología , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
J Exp Bot ; 75(15): 4655-4670, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38812358

RESUMEN

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as second messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and a target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located-in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled a dual role of ANAC102 in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés Oxidativo , Paraquat , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Paraquat/farmacología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo
5.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597493

RESUMEN

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Asunto(s)
Paraquat , Sistema Renina-Angiotensina , Ratas , Animales , Masculino , Especies Reactivas de Oxígeno/metabolismo , Paraquat/metabolismo , Paraquat/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Creatinina/metabolismo , Creatinina/orina , Interleucina-6 , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Riñón , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Sodio/metabolismo , Sodio/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología
6.
J Transl Med ; 22(1): 310, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532482

RESUMEN

BACKGROUND: Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS: Cellular senescence was determined by immunohistochemistry and SA-ß-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS: Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of ß-catenin and Wnt signaling activation. CONCLUSION: These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/ß-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.


Asunto(s)
Exosomas , MicroARNs , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/genética , Paraquat/metabolismo , Paraquat/farmacología , beta Catenina/metabolismo , Exosomas/metabolismo , Sirtuina 1/metabolismo , Pulmón/patología , MicroARNs/genética , Células Epiteliales/patología , Fibroblastos/metabolismo
7.
J Environ Sci (China) ; 141: 129-138, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408814

RESUMEN

While the spatial distribution pattern of fish is increasingly used for toxicological test of chemicals or wastewater, no ideal parameter is available for quantitative assessment of spatial distribution, especially uneven distribution with multiple hotspots. Here, to develop a quantitative assessment parameter for spatial distribution, the zebrafish were exposed to ethanol, pentylenetetrazole (PTZ), paraquat dichloride (paraquat) and wastewater, followed by a behavioral test in a narrow tank. Behavioral data was acquired and analyzed by idTracker and MATLAB. By comparing the effects of all treatments on behavior parameters, we confirmed that the spatial distribution was more easily altered rather than general locomotor parameters, e.g. 0.7-70 mg/L PTZ and 5-20 mg/L paraquat being effective for altering spatial distribution but having little effects on general locomotor parameters. Based on the heatmap, i.e., the cumulative proportion of grids and that of frequency in grids, we calculated the behavioral Gini coefficient (Gb) for quantitative assessment of fish spatial distribution. The Gini coefficient ranged from zero to 1, with larger values meaning poorer evenness of spatial distribution. Of note, Gb showed smaller coefficient of variations (CV) with 3%-19% between replicate tanks in all treatments than the highest frequency (4%-79%), displaying well robustness. Especially, Gb addressed the challenge of the complicated heatmap with multiple hotspots. Overall, the behavioral Gini coefficient we established is an ideal parameter to quantitatively assess spatial distribution of fish shoal, which is expected to be applied in toxicity testing for chemicals and wastewater and automatic quality monitoring for surface water and aquaculture water.


Asunto(s)
Aguas Residuales , Pez Cebra , Animales , Paraquat/farmacología , Conducta Animal , Agua
8.
J Exp Bot ; 75(1): 405-421, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728561

RESUMEN

The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Paraquat/farmacología , Paraquat/metabolismo , Proteoma/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacología , Estrés Oxidativo , Fotosíntesis , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
9.
Sci Rep ; 13(1): 19753, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957289

RESUMEN

Paraquat (PQ) is a herbicide that has ability to induce testicular toxicity by producing reactive oxygen species (ROS). Sciadopitysin (SPS) is a promising flavonoid that displays multiple pharmacological properties i.e., anti-inflammatory, anti-oxidant and anti-apoptotic. Therefore, the present study was designed to evaluate the mitigative role of SPS against PQ induced testicular toxicity in male rats. The experiment was performed on male albino rats (n = 48) that were divided into 4 groups. The group-1 was control group. Group-2 was administrated orally with PQ (5 mg/kg). Group-3 was administrated orally with PQ (5 mg/kg) and SPS (2 mg/kg). Group-4 was supplemented with SPS (2 mg/kg) through oral gavage. The experiment was conducted for 56 days. The exposure to PQ significantly lowered the activities of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx). Whereas, a substantial increase was observed in dead sperms number, abnormalities in the tail, head as well as midpiece of sperms in PQ intoxicated rats. Moreover, a significant increase in the level of ROS and malondialdehyde (MDA) was noticed in PQ administrated group. Furthermore, steroidogenic enzymes expression was significantly decreased in PQ-intoxicated group, whereas the level of inflammatory markers was increased in PQ administrated rats. Besides, the expression of apoptotic markers was significantly escalated in PQ exposed rats, whereas the expression of anti-apoptotic markers was considerably reduced. A significant reduction in hormonal level was also noticed in the rats that were administrated with PQ. Moreover, the histopathological examination revealed that PQ significantly damaged the testicles. However, the supplementation of SPS with PQ significantly reduced the adverse effects of PQ in the testes of albino rats. Therefore, the current investigation demonstrated that SPS possesses a significant potential to avert PQ-induced testicular dysfunction due to its anti-apoptotic, androgenic, anti-oxidant and anti-inflammatory nature.


Asunto(s)
Antioxidantes , Paraquat , Ratas , Masculino , Animales , Paraquat/farmacología , Antioxidantes/metabolismo , Testículo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antiinflamatorios/farmacología , Estrés Oxidativo
10.
PLoS One ; 18(10): e0263154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824594

RESUMEN

The effect of paraquat, oxadiazon and oxyfluorfen herbicides was tested on two populations of hairy fleabane (Erigeron bonariensis L.), collected from a date palm orchard at Tal al-Ramil (Central Jordan Valley) and al-Twal (Northern Jordan Valley) sites using the recommended rates (0.5, 1.25 and 0.792kg a.i ha-1 for each herbicide, respectively) and 10-fold (5, 12.50 and 7.92 kg a.i. ha-1, respectively) under glasshouse conditions. Results showed that the date palm weed population was resistant to the three herbicides at both application rates and al-Twal site population was highly susceptible. Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling the weed in the date palm orchard during the spring of 2017, revealed that E. bonariensis resists paraquat (0.5, 1.0 and 1.5 kg a.i. ha-1), oxadiazon (1.25 kg a.i. ha-1) and oxyfluorfen (0.792 kg a.i. ha-1) herbicides. None of the three herbicides was effective against the weed and treated plants continued to grow normally similar to those of untreated control. Ten-fold higher rates of these herbicides failed to control the weed. The effect of other tested herbicides was variable with bromoxynil plus MCPA (buctril®M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr being the most effective and completely controlling the weed at recommended rates of application. It is concluded that the tested populations of E. bonariensis developed resistance to paraquat, oxadiazon and oxyfluorfen but control of the weed was possible using other herbicides with different mechanisms of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed. These results represent the first report of herbicide resistance of E. bonariensis in Jordan.


Asunto(s)
Conyza , Erigeron , Herbicidas , Paraquat/farmacología , Resistencia a los Herbicidas , Jordania , Herbicidas/farmacología , Control de Malezas/métodos
11.
Cell Rep ; 42(9): 113105, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37713311

RESUMEN

Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.


Asunto(s)
Escherichia coli , Paraquat , Paraquat/farmacología , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica
12.
Artículo en Chino | MEDLINE | ID: mdl-37400407

RESUMEN

Objective: To investigate the effects of duration, temperature and shake on paraquat (PQ) concentration in the blood of PQ-exposed rats during the specinen preservation and transportation. Methods: In March 2021, 60 SD male rats of Specific Pathogen Free class were randomly divided into low-dose group (10 mg/kg PQ) and high-dose group (80 mg/kg PQ). Each group was divided into 5 subgroups (normal temperature group, cold storage group, 37 ℃ storage group, shaking on normal temperature group and shaking on 37 ℃ group), six rats in each subgroup. The rats were given intraperitoneal injection of PQ, 1 h after exposure, the blood samples were obtained by cardiac extraction. After different interventions, the concentrations of PQ were detected and compared before and after the intervention in each subgroup. Results: In the shaking on 37 ℃ group, the results of PQ concentrations in PQ-exposed rats were significantly lower than those before the intervention (P<0.05). In the other subgroups, the results were not significantly different compared with before intervention (P>0.05) . Conclusion: The concentration of PQ in the blood of rats exposed to PQ was decreased by shaking for 4 hours at 37 ℃.


Asunto(s)
Pulmón , Paraquat , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Paraquat/farmacología
13.
Cells Dev ; 175: 203860, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37270067

RESUMEN

Peroxiredoxins (Prdxs) are thiol-dependent enzymes that scavenge peroxides. Previously, we found that Prdxs were hyperoxidized in a Parkinson's disease model induced by paraquat (PQ), which led to their inactivation, perpetuating reactive oxygen species (ROS) formation. Herein, we evaluated the redox state of the typical 2-Cys-Prx subgroup. We found that PQ induces ROS compartmentalization in different organelles, reflected by the 2-Cys-Prdx hyperoxidation pattern detected by redox eastern blotting. 2-Cys Prdxs are most vulnerable to hyperoxidation, while atypical 2-Cys Peroxiredoxin 5 (Prdx5) is resistant and is expressed in multiple organelles, such as mitochondria, peroxisomes, and cytoplasm. Therefore, we overexpressed human Prdx5 in the dopaminergic SHSY-5Y cell line using the adenoviral vector Ad-hPrdx5. Prdx5 overexpression was confirmed by western blotting and immunofluorescence (IF) and effectively decreased PQ-mediated mitochondrial and cytoplasmic ROS assessed with a mitochondrial superoxide indicator and DHE through IF or flow cytometry. Decreased ROS mediated by Prdx5 in the main subcellular compartments led to overall cell protection against PQ-induced cell death, which was demonstrated by flow cytometry using Annexin V labeling and 7-AAD. Therefore, Prdx5 is an attractive therapeutic target for PD, as its overexpression protects dopaminergic cells from ROS and death, which warrants further experimental animal studies for its subsequent application in clinical trials.


Asunto(s)
Estrés Oxidativo , Paraquat , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Paraquat/farmacología , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacología , Muerte Celular/genética
14.
Int J Med Mushrooms ; 25(5): 61-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183919

RESUMEN

This paper reports the effects of solvents on the dissolution rate and antioxidant capacity of Auricularia auricula polysaccharides (AAPs). The ultra-low temperature combined with microwave extraction (UME) was used to compare the dissolution rates and molecular weights of AAPs using deionized water and deep eutectic solvents (DES) as solvents, respectively. Scanning electron microscope (SEM) was used to observe the effects of water extract (AAPs-FW) and DES extract (AAPs-FD) on the cell wall of A. auricula. The antioxidant capacity of polysaccharide extracts in vitro was assessed by using various methods (DPPH, ABTS, and hydroxyl radicals). In addition, in vivo oxidative stress was assessed using Caenorhabditis elegans models. The extract yield of AAPs varied among the extracts and was 19.58% ± 0.56% in AAPs-FW. Whereas DES-UME increased the yield of polysaccharides (AAPs-FD) by 9.81% in the extraction medium containing triethylene glycol-choline chloride, under the optimum conditions of 60 min freezing time, 350 W, and 90 s microwave time. The microstructure of the cell wall shown by SEM was consistent with the results of polysaccharide yields. The molecular weights of AAPs-FW and AAPs-FD were found to be 398.107 kDa and 89.099 kDa, respectively. The results demonstrated that AAPs-FD exhibited potent radical scavenging activity against DPPH and a weaker scavenging ability for ABTS and OH radicals compared to AAPs-FW. In addition, both polysaccharide extracts increased the survival rate of C. elegans under methyl viologen induced oxidative stress at specific concentrations (p < 0.05), and the antioxidant capacity of AAPs-FD was higher than that of AAPs-FW at low concentrations (0.125 mg/mL). This indicated that both polysaccharides had a protective effect against damage induced by intracellular free radical generators (methyl viologen).


Asunto(s)
Antioxidantes , Basidiomycota , Animales , Antioxidantes/farmacología , Antioxidantes/química , Solventes/farmacología , Caenorhabditis elegans , Solubilidad , Paraquat/farmacología , Basidiomycota/química , Polisacáridos/farmacología , Polisacáridos/química , Agua
15.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047599

RESUMEN

Eleusine indica (goosegrass) is a problematic weed worldwide known for its multi-herbicide tolerance/resistance biotype. However, a genetic transformation method in goosegrass has not been successfully established, making a bottleneck for functional genomics studies in this species. Here, we report a successful Agrobacterium-mediated transformation method for goosegrass. Firstly, we optimized conditions for breaking seed dormancy and increasing seed germination rate. A higher callus induction rate from germinated seeds was obtained in N6 than in MS or B5 medium. Then the optimal transformation efficiency of the gus reporter gene was obtained by infection with Agrobacterium tumefaciens culture of OD600 = 0.5 for 30 min, followed by 3 days of co-cultivation with 300 µmol/L acetosyringone. Concentrations of 20 mg L-1 kanamycin and 100 mg L-1 timentin were used to select the transformed calli. The optimal rate of regeneration of the calli was generated by using 0.50 mg L-1 6-BA and 0.50 mg L-1 KT in the culture medium. Then, using this transformation method, we overexpressed the paraquat-resistant EiKCS gene into a paraquat-susceptible goosegrass biotype MZ04 and confirmed the stable inheritance of paraquat-resistance in the transgenic goosegrass lines. This approach may provide a potential mechanism for the evolution of paraquat-resistant goosegrass and a promising gene for the manipulation of paraquat-resistance plants. This study is novel and valuable in future research using similar methods for herbicide resistance.


Asunto(s)
Eleusine , Paraquat , Paraquat/farmacología , Eleusine/genética , Agrobacterium tumefaciens/genética , Resistencia a los Herbicidas/genética , Transformación Genética , Plantas Modificadas Genéticamente/genética
16.
Mol Neurobiol ; 60(8): 4246-4260, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37060501

RESUMEN

C-terminal binding proteins (CtBP) are transcriptional co-repressors regulating gene expression. CtBP promote neuronal survival through repression of pro-apoptotic genes, and may represent relevant targets for neurodegenerative disorders, such as Parkinson's disease (PD). Nevertheless, evidence of the role of CtBP1 and CtBP2 in neurodegeneration are scarce. Herein, we showed that CtBP1 and CtBP2 are expressed in neurons, dopaminergic neurons, astrocytes, and microglia in the substantia nigra (SN) and striatum of adult mice. Old mice showed a lower expression of CtBP1 in the SN and higher expression of CtPB2 in the SN and striatum compared with adult mice. In vivo models for PD (paraquat, MPTP, 6-OHDA) showed increased expression of CtBP1 in the SN and striatum while CtBP2 expression was increased in the striatum of paraquat-treated rats only. Moreover, an increased expression of both CtBP was found in a dopaminergic cell line (N27) exposed to 6-OHDA. In the 6-OHDA PD model, we found a dual effect using an unspecific ligand of CtBP, the 4-methylthio 2-oxobutyric acid (MTOB): higher concentrations (e.g. 2500 µM, 1000 µM) inhibited dopaminergic survival, while at 250 µM it counteracted cell death. In vitro, this latter protective role was absent after the siRNA silencing of CtBP1 or CtBP2. Altogether, this is the first report exploring the cellular and regional expression pattern of CtBP in the nigrostriatal pathway and the neuroprotective role in PD toxin-based models. CtBP could counteract dopaminergic cell death in the 6-OHDA PD model and, therefore, CtBP function and therapeutic potential in PD should be further explored.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Oxidopamina/farmacología , Paraquat/farmacología , Factores de Transcripción/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Ratones Endogámicos C57BL
17.
Free Radic Biol Med ; 197: 23-45, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669545

RESUMEN

Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Ratas , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Paraquat/farmacología , Feocromocitoma/tratamiento farmacológico , Feocromocitoma/genética , Proteómica , Apoptosis , Estrés Oxidativo , Venenos de Serpiente/metabolismo , Venenos de Serpiente/farmacología
18.
Plant Cell Physiol ; 63(12): 2027-2041, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36197756

RESUMEN

Two-stage cultivation is effective for glycogen production by cyanobacteria. Cells were first grown under adequate nitrate supply (BG11) to increase biomass and subsequently transferred to nitrogen deprivation (-N) to stimulate glycogen accumulation. However, the two-stage method is time-consuming and requires extensive energy. Thus, one-stage cultivation that enables both cell growth and glycogen accumulation is advantageous. Such one-stage method could be achieved using a chemical triggering glycogen storage. However, there is a limited study on such chemicals. Here, nine compounds previously reported to affect cyanobacterial cellular functions were examined in Synechocystis sp. PCC 6803. 2-Phenylethanol, phenoxyethanol, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and methyl viologen can stimulate glycogen accumulation. The oxidative stress agent, methyl viologen significantly increased glycogen levels up to 57% and 69% [w/w dry weight (DW)] under BG11 and -N cultivation, respectively. One-stage cultivation where methyl viologen was directly added to the pre-grown culture enhanced glycogen storage to 53% (w/w DW), compared to the 10% (w/w DW) glycogen level of the control cells without methyl viologen. Methyl viologen treatment reduced the contents of total proteins (including phycobiliproteins) but caused increased transcript levels of glycogen synthetic genes and elevated levels of metabolite substrates for glycogen synthesis. Metabolomic results suggested that upon methyl viologen treatment, proteins degraded to amino acids, some of which could be used as a carbon source for glycogen synthesis. Results of oxygen evolution and metabolomic analysis suggested that photosynthesis and carbon fixation were not completely inhibited upon methyl viologen treatment, and these two processes may partially generate upstream metabolites required for glycogen synthesis.


Asunto(s)
Synechocystis , Synechocystis/metabolismo , Glucógeno/metabolismo , Paraquat/farmacología , Fotosíntesis , Estrés Oxidativo
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-986048

RESUMEN

Objective: To investigate the effects of duration, temperature and shake on paraquat (PQ) concentration in the blood of PQ-exposed rats during the specinen preservation and transportation. Methods: In March 2021, 60 SD male rats of Specific Pathogen Free class were randomly divided into low-dose group (10 mg/kg PQ) and high-dose group (80 mg/kg PQ). Each group was divided into 5 subgroups (normal temperature group, cold storage group, 37 ℃ storage group, shaking on normal temperature group and shaking on 37 ℃ group), six rats in each subgroup. The rats were given intraperitoneal injection of PQ, 1 h after exposure, the blood samples were obtained by cardiac extraction. After different interventions, the concentrations of PQ were detected and compared before and after the intervention in each subgroup. Results: In the shaking on 37 ℃ group, the results of PQ concentrations in PQ-exposed rats were significantly lower than those before the intervention (P<0.05). In the other subgroups, the results were not significantly different compared with before intervention (P>0.05) . Conclusion: The concentration of PQ in the blood of rats exposed to PQ was decreased by shaking for 4 hours at 37 ℃.


Asunto(s)
Ratas , Masculino , Animales , Ratas Sprague-Dawley , Paraquat/farmacología , Pulmón
20.
Redox Biol ; 58: 102534, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36379180

RESUMEN

Epidemiological studies have linked herbicides and Parkinson's disease (PD), with the strongest associations resulting from long exposure durations. Paraquat (PQ), an herbicide, induces PD-like syndromes and has widely been accepted as a PD mimetic. Currently, there is still no cure to prevent the progression of PD, and the search for effective therapeutic ways is urgent. Recently, the impairing activity of sirtuins (SIRTs), such as SIRT1, may correlate with PD etiology. However, the nonspecificity of SIRT1 agonists has made the protective mechanisms against PD unclear and hampered the therapeutic application of SIRT1. Thus, this study investigated the protective mechanism and therapeutic potential of SRT1720, a more specific agonist for SIRT1 synthesized by Sirtris, in alleviating the toxicity of PQ-induced cellular and animal models of PD. Here we show that SRT1720 alleviates PQ-induced toxicity in cell and animal models. Genetic silencing and pharmacological inhibition of SIRT1 attenuated SRT1720's protection against PQ-induced toxicity. Moreover, SRT1720 not only attenuated PQ-induced increased oxidative stress and mitochondrial free radical formations but also decreased mitochondrial membrane potential. Furthermore, SRT1720 reversed PQ-induced decreased PGC-1α levels and mitochondrial biogenesis. Although PQ and SRT1720 elevated NRF2 and antioxidative enzyme levels, only PQ decreased antioxidative enzyme activity but not SRT1720. NRF2 and PGC-1α silencing attenuated SRT1720 protection against PQ-induced toxicity. SRT1720 targeted SIRT1 and activated downstream PGC-1α and NRF2 signalings to prevent PQ-induced toxicity involving oxidative stress and mitochondrial dysfunction. Thus, SRT1720 might have therapeutic potential in preventing PD.


Asunto(s)
Herbicidas , Enfermedad de Parkinson , Animales , Paraquat/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Herbicidas/toxicidad , Herbicidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA