Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
BMC Plant Biol ; 24(1): 836, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243043

RESUMEN

BACKGROUND: Invertases (INVs) are key enzymes in sugar metabolism, cleaving sucrose into glucose and fructose and playing an important role in plant development and the stress response, however, the INV gene family in passion fruit has not been systematically reported. RESULTS: In this study, a total of 16 PeINV genes were identified from the passion fruit genome and named according to their subcellular location and chromosome position. These include six cell wall invertase (CWINV) genes, two vacuolar invertase (VINV) genes, and eight neutral/alkaline invertase (N/AINV) genes. The gene structures, phylogenetic tree, and cis-acting elements of PeINV gene family were predicted using bioinformatics methods. Results showed that the upstream promoter region of the PeINV genes contained various response elements; particularly, PeVINV2, PeN/AINV3, PeN/AINV5, PeN/AINV6, PeN/AINV7, and PeN/AINV8 had more response elements. Additionally, the expression profiles of PeINV genes under different abiotic stresses (drought, salt, cold temperature, and high temperature) indicated that PeCWINV5, PeCWINV6, PeVINV1, PeVINV2, PeN/AINV2, PeN/AINV3, PeN/AINV6, and PeN/AINV7 responded significantly to these abiotic stresses, which was consistent with cis-acting element prediction results. Sucrose, glucose, and fructose are main soluble components in passion fruit pulp. The contents of total soluble sugar, hexoses, and sweetness index increased significantly at early stages during fruit ripening. Transcriptome data showed that with an increase in fruit development and maturity, the expression levels of PeCWINV2, PeCWINV5, and PeN/AINV3 exhibited an up-regulated trend, especially for PeCWINV5 which showed highest abundance, this correlated with the accumulation of soluble sugar and sweetness index. Transient overexpression results demonstrated that the contents of fructose, glucose and sucrose increased in the pulp of PeCWINV5 overexpressing fruit. It is speculated that this cell wall invertase gene, PeCWINV5, may play an important role in sucrose unloading and hexose accumulation. CONCLUSION: In this study, we systematically identified INV genes in passion fruit for the first time and further investigated their physicochemical properties, evolution, and expression patterns. Furthermore, we screened out a key candidate gene involved in hexose accumulation. This study lays a foundation for further study on INV genes and will be beneficial on the genetic improvement of passion fruit breeding.


Asunto(s)
Frutas , Passiflora , beta-Fructofuranosidasa , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Hexosas/metabolismo , Familia de Multigenes , Passiflora/genética , Passiflora/enzimología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
2.
PeerJ ; 12: e17983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282122

RESUMEN

Background: Passion fruit (Passiflora edulis) is loved for its delicious flavor and nutritious juice. Although studies have delved into the cultivation and enhancement of passion fruit varieties, the underlying factors contributing to the fruit's appealing aroma remain unclear. Methods: This study analyzed the full-length transcriptomes of two passion fruit cultivars with different flavor profiles: "Tainong 1" (TN1), known for its superior fruit flavor, and "Guihan 1" (GH1), noted for its strong environmental resilience but lackluster taste. Utilizing PacBio Iso-Seq and Illumina RNA-Seq technologies, we discovered terpene synthase (TPS) genes implicated in fruit ripening that may help explain the flavor disparities. Results: We generated 15,913 isoforms, with N50 lengths of 1,500 and 1,648 bp, and mean lengths of 1,319 and 1,463 bp for TN1 and GH1, respectively. Transcript and isoform lengths ranged from a maximum of 7,779 bp to a minimum of 200 and 209 bp. We identified 14,822 putative coding DNA sequences (CDSs) averaging 1,063 bp, classified 1,007 transcription factors (TFs) into 84 families. Additionally, differential expression analysis of ripening fruit from both cultivars revealed 314 upregulated and 43 downregulated unigenes in TN1 compared to GH1. The top 10 significantly enriched Gene Ontology (GO) terms for the differentially expressed genes (DEGs) indicated that TN1's upregulated genes were primarily involved in nutrient transport, whereas GH1's up-regulated genes were associated with resistance mechanisms. Meanwhile, 17 PeTPS genes were identified in P. edulis and 13 of them were TPS-b members. A comparative analysis when compared PeTPS with AtTPS highlighted an expansion of the PeTPS-b subfamily in P. edulis, suggesting a role in its fruit flavor profile. Conclusion: Our findings explain that the formation of fruit flavor is attributed to the upregulation of essential genes in synthetic pathway, in particular the expansion of TPS-b subfamily involved in terpenoid synthesis. This finding will also provide a foundational genetic basis for understanding the nuanced flavor differences in this species.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Passiflora , RNA-Seq , Transcriptoma , Frutas/genética , Frutas/metabolismo , Passiflora/genética , RNA-Seq/métodos , Transcriptoma/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Gusto/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos
3.
Viruses ; 16(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39205205

RESUMEN

East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam's severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection.


Asunto(s)
Mutación , Enfermedades de las Plantas , Potyvirus , Proteínas Virales , Protección Cruzada , Cisteína Endopeptidasas , Nicotiana/virología , Nicotiana/genética , Passiflora/virología , Passiflora/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Potyvirus/genética , Eliminación de Secuencia , Taiwán , Vietnam , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Braz J Biol ; 84: e282426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166688

RESUMEN

The Yellow passion fruit belongs to the Passifloraceae family with great economic, nutritional and social importance in Colombia. It presents a great phenotypic and genotypic diversity, which has not yet been explored or used in genetic improvement programs. The objective of this study was to evaluate the genetic diversity of 84 cultivars of Passiflora edulis f. flavicarpa from nine farms in the municipality of Miraflores, Boyacá, using eight microsatellite markers (SSR). On the basis of this information, estimates of genetic diversity parameters, molecular variance analysis (AMOVA), genetic distances, and cluster of cultivars were obtained. Low levels of genetic differentiation between cultivars were observed in the Bayesian analysis using Structure software, as well as the absence of correlation between genetic and geographic distances. The observed heterozygosity (0.50) was greater than the expected heterozygosity (0.43), suggesting a significant number of heterozygous individuals. The number of alleles per locus varied from 2 to 4, with a mean 2.88. In general, SSR were classified as informative (0.36). The average value of the Shannon Index was 0.71, which shows moderate variability in this cultivar. AMOVA showed higher diversity within cultivars (98%). The gene flow (Nm=28.4) was moderate, this can be explained by the flow of pollen between the different cultivars, the reproduction system of the species, self-incompatibility and the introduction of genotypes from other sites by farmers. The genetic diversity identified in this study is sufficient to initiate breeding programs aimed at identifying cultivars with higher yields.


Asunto(s)
Variación Genética , Genotipo , Repeticiones de Microsatélite , Passiflora , Repeticiones de Microsatélite/genética , Passiflora/genética , Passiflora/clasificación , Colombia , Frutas/genética , ADN de Plantas/genética
5.
Methods Mol Biol ; 2827: 207-222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985273

RESUMEN

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Asunto(s)
Passiflora , Técnicas de Embriogénesis Somática de Plantas , Técnicas de Cultivo de Tejidos , Passiflora/genética , Passiflora/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Técnicas de Cultivo de Tejidos/métodos , Transformación Genética , MicroARNs/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas
6.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961401

RESUMEN

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Asunto(s)
Calmodulina , Flores , Frutas , Passiflora , Filogenia , Proteínas de Plantas , Passiflora/genética , Passiflora/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genes de Plantas , Perfilación de la Expresión Génica
7.
Int J Biol Macromol ; 276(Pt 1): 133603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969043

RESUMEN

The HD-ZIP (homeodomain-leucine zipper) genes hold significant importance in transcriptional regulation, especially in plant development and responses to abiotic stresses. However, a comprehensive study targeting HD-ZIP family members in passion fruit has been absent. In our current research, 34 HD-ZIP family members (PeHBs) were identified by bioinformatics analysis. Transcriptome analysis revealed that PeHBs exhibited distinct expression patterns when subjected to the four different abiotic stresses, and significant differential expression of PeHBs was also found among the three developmental stages of the fruit and between the purple and yellow genotype passion fruit leaves. An integrated metabolome and transcriptome analysis further revealed that the HD-ZIP III class gene PeHB31 (homologous to ATHB8), was co-upexpressed with lignans in yellow fruit P. edulis (commonly used as a resistance rootstock) when compared to purple fruit P. edulis. The transformation of Arabidopsis and yeast with the PeHB31 gene showed an enhancement in their capacity to withstand drought conditions. Notably, the transgenic Arabidopsis plants exhibited an increase in lignin content within the vascular tissues of their stems. This research lays the groundwork for future studies on the control mechanisms of lignin biosynthesis by HD-ZIP genes (especially HD-ZIP classes III and I) involved in drought tolerance.


Asunto(s)
Sequías , Frutas , Regulación de la Expresión Génica de las Plantas , Lignina , Passiflora , Proteínas de Plantas , Estrés Fisiológico , Lignina/biosíntesis , Lignina/metabolismo , Lignina/genética , Passiflora/genética , Passiflora/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Leucina Zippers/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Resistencia a la Sequía
8.
Genes (Basel) ; 15(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38674353

RESUMEN

The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive DNA of these three species' genomes were analyzed using clustering and identification of the repetitive sequences with RepeatExplorer. It was found that repetitive DNA content represents 74.70%, 66.86%, and 62.24% of the genome of P. alata, P. edulis, and P. cincinnata, respectively. LTR Ty3/Gypsy retrotransposons represent the highest genome proportions in P. alata and P. edulis, while Ty1/Copia comprises the largest proportion of P. cincinnata genome. Chromosomal mapping by Fluorescent In Situ Hybridization (FISH) showed that LTR retrotransposons have a dispersed distribution along chromosomes. The subtelomeric region of chromosomes is where 145 bp satellite DNA is located, suggesting that these elements may play important roles in genome structure and organization in these species. In this work, we obtained the first global characterization of the composition of repetitive DNA in Passiflora, showing that an increase in genome size is related to an increase in repetitive DNA, which represents an important evolutionary route for these species.


Asunto(s)
ADN Satélite , Genoma de Planta , Passiflora , Retroelementos , Passiflora/genética , ADN Satélite/genética , Retroelementos/genética , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , ADN de Plantas/genética , Hibridación Fluorescente in Situ , Mapeo Cromosómico
9.
J Agric Food Chem ; 72(17): 10138-10148, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637271

RESUMEN

Passion fruit (Passiflora spp.) is an important fruit tree in the family Passifloraceae. The color of the fruit skin, a significant agricultural trait, is determined by the content of anthocyanin in passion fruit. However, the regulatory mechanisms behind the accumulation of anthocyanin in different passion fruit skin colors remain unclear. In the study, we identified and characterized a R2R3-MYB transcription factor, PeMYB114, which functions as a transcriptional activator in anthocyanin biosynthesis. Yeast one-hybrid system and dual-luciferase analysis showed that PeMYB114 could directly activate the expression of anthocyanin structural genes (PeCHS and PeDFR). Furthermore, a natural variation in the promoter region of PeMYB114 alters its expression. PeMYB114purple accessions with the 224-bp insertion have a higher anthocyanin level than PeMYB114yellow accessions with the 224-bp deletion. The findings enhance our understanding of anthocyanin accumulation in fruits and provide genetic resources for genome design for improving passion fruit quality.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Passiflora , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Antocianinas/metabolismo , Antocianinas/genética , Passiflora/genética , Passiflora/metabolismo , Passiflora/química , Frutas/metabolismo , Frutas/genética , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación INDEL
10.
BMC Genomics ; 25(1): 157, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331722

RESUMEN

Passionfruit (Passiflora edulis) is a significant fruit crop in the commercial sector, owing to its high nutritional and medicinal value. The advent of high-throughput genomics sequencing technology has led to the publication of a vast amount of passionfruit omics data, encompassing complete genome sequences and transcriptome data under diverse stress conditions. To facilitate the efficient integration, storage, and analysis of these large-scale datasets, and to enable researchers to effectively utilize these omics data, we developed the first passionfruit genome database (PGD). The PGD platform comprises a diverse range of functional modules, including a genome browser, search function, heatmap, gene expression patterns, various tools, sequence alignment, and batch download, thereby providing a user-friendly interface. Additionally, supplementary practical tools have been developed for the PGD, such as gene family analysis tools, gene ontology (GO) terms, a pathway enrichment analysis, and other data analysis and mining tools, which enhance the data's utilization value. By leveraging the database's robust scalability, the intention is to continue to collect and integrate passionfruit omics data in the PGD, providing comprehensive and in-depth support for passionfruit research. The PGD is freely accessible via http://passionfruit.com.cn .


Asunto(s)
Passiflora , Diagnóstico Preimplantación , Femenino , Embarazo , Humanos , Passiflora/genética , Genómica , Genoma , Análisis de Secuencia , Bases de Datos Genéticas
11.
Int J Biol Macromol ; 256(Pt 1): 128063, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963507

RESUMEN

WRKY transcription factors (TFs) are a superfamily of regulators involved in plant responses to pathogens and abiotic stress. Passion fruit is famous for its unique flavor and nutrient-rich juice, but its growth is limited by environmental factors and pathogens. In this study, 55 WRKY genes were identified from the Passiflora edulis genome. The structure and evolutionary characteristics of PeWRKYs were analyzed using a bioinformatics approach. PeWRKYs were classified into seven subgroups (I, IIa, IIb, IIc, IId, IIe, III) according to their homologs in Arabidopsis thaliana. Group IIa PeWRKY48 gene was highly up-regulated under cold stress by RNA expression analysis, and transgenic PeWRKY48 in yeast and Arabidopsis showed resistance exposure to cold, salt, and drought stress. Metabolome and transcriptome co-expression analysis of two different disease resistance genotypes of P. edulis identified PeWRKY30 as a key TF co-expressed with flavonoid accumulation in yellow fruit P. edulis, which may contribute to biotic or abiotic resistance. The qRT-PCR verified the expression of key genes in different tissues of P. edulis and in different species of Passiflora. This study provides a set of WRKY candidate genes that will facilitate the genetic improvement of disease and abiotic tolerance in passion fruit.


Asunto(s)
Arabidopsis , Passiflora , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Passiflora/genética , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Respuesta al Choque por Frío , Arabidopsis/genética , Filogenia , Regulación de la Expresión Génica de las Plantas
12.
Plant Physiol ; 194(4): 2491-2510, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039148

RESUMEN

Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6∼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142 Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.


Asunto(s)
Frutas , Passiflora , Frutas/genética , Odorantes , Passiflora/genética , Passiflora/metabolismo , Multiómica , Terpenos/metabolismo
13.
Pak J Biol Sci ; 26(10): 504-509, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38110555

RESUMEN

<b>Background and Objective:</b> This plant is known in many parts of the world and is used as medicine in some countries. In Vietnam, people know how to use <i>Passiflora foetida </i>L.,<i> </i>as an herb. There are many research works in the world, most of them focus on medicinal properties. The objective of this study was to determine the genetic diversity of samples of <i>Passiflora foetida </i>L., yellow fruit based on agronomic traits and the gene region of "<i>rbcL</i>". <b>Materials and Methods:</b> Seed samples were arranged in a completely randomized design with three replications. The trial was a sample of <i>Passiflora foetida </i>L., species. The distance between sample plant is 3×2 m, so the total number of trees is 1,330 trees ha<sup>1</sup>. The genetic relationship between them was determined through the construction of a phylogenetic tree in the "<i>rbcL</i>" gene region sequence. Data analysis and processing methods done by using X software. <b>Results:</b> The PCR results that amplify the "<i>rbcL</i>" gene region around 670 bp, the PCR products were then sequenced. The sequence results were compared with the sequences on the NCBI gene bank, showing that the sequences of the nine varieties/species all coincided with the <i>Passiflora foetida </i>Sims species sequences with a high similarity coefficient from 98.77 to 99.9%. Genetically shows that all nine species samples belong to <i>Passiflora foetida</i> which can be classified into three genetic samples of An Giang (LA1), Ca Mau (LA2) and Can Tho (LA3) which are genetically close to each other, have the same index. <b>Conclusion:</b> The heritability in the broad sense is high in the two traits of stem height and leaf length, so it can be considered that these two traits are controlled by genes. The cultivation of algae seeds to improve the productivity of these medicinal plant varieties is important in providing raw materials for the oriental medicine industry.


Asunto(s)
Passiflora , Humanos , Passiflora/genética , Neurastenia , Filogenia , Agricultura , Preparaciones Farmacéuticas
14.
Braz J Biol ; 83: e278167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126647

RESUMEN

Passiflora edulis it is a specie widely distributed and cultivated in Colombia, with economic potential. Although there is a wide genetic and phenotypic variability, it has not yet been explored through the use of molecular techniques. This study aimed to characterize the structure and genetic diversity of P. edulis cultivars using ISSR markers. The study was carried out using leaf samples from 21 cultivars of P. edulis collected within a productive system in the department of Boyacá, Colombia, using seven ISSR primers. Genetic similarity was used to cluster by the UPGMA method, polymorphic information content (PIC), expected heterozygosity (He), Shannon index (I), gene flow (Nm), and coefficient of genetic differentiation (Gst) were estimated using POPGENE and TFPGA software. The Bayesian model and analysis of molecular variance (AMOVA) were used to assess the genetic structure. Cultivars of P. edulis showed high polymorphism rates. Seven ISSR produced 138 loci. The cluster analysis formed two groups according to the genetic similarity and phenotypic characteristics associated mainly with the fruit. The average value of expected heterozygosity was 0.29 for the total population and 0.27 and 0.22 for groups I and II, respectively. AMOVA indicates higher diversity within groups, but not between groups showing levels of hierarchy different from those considered in this study. Moderate genetic differentiation (Gst=0.12) and high gene flow (Nm=3.91) are observed.


Asunto(s)
Passiflora , Passiflora/genética , Teorema de Bayes , Polimorfismo Genético/genética , Análisis por Conglomerados , Frutas
15.
Braz J Biol ; 83: e275338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970903

RESUMEN

Simultaneous analysis studies of several agronomic traits in cultivated plants make it possible to identify phenotypic and genotypic differences due to environmental variations, such as altitude. Therefore, the objective was to evaluate, through multivariate analysis of agronomic, physicochemical and physiological characters, passion fruit hybrids cultivated in different environments. The hybrids used were Gigante Amarelo, Rubi do Cerrado and Sol do Cerrado, cultivated in the southern region of Espírito Santo in four municipalities/environments: Marataízes (41 m), Jerônimo Monteiro (104 m), Alegre (711 m), and Ibitirama (1016 m). The agronomic characters of the plants, the physical-chemical characteristics of the fruits and the physical, biochemical and physiological qualities of the seeds were analyzed. The Singh method was used to determine the most important differentiating characters between hybrids growing in different environments. Based on these characters, a dissimilarity matrix was generated and a principal coordinate analysis was performed. It was observed that the pulp yield was influenced by altitude. The three hybrids showed greater performance in terms of agronomic characters at altitude (41 m) than at altitude (104 m). The Sol do Cerrado hybrid showed high performance in the physical-chemical characteristics of the fruits at altitude (104 m).


Asunto(s)
Frutas , Passiflora , Frutas/genética , Passiflora/genética , Semillas , Agricultura , Análisis Multivariante
16.
BMC Plant Biol ; 23(1): 544, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932686

RESUMEN

BACKGROUND: Passion fruit (Passiflora edulis [Sims]) is an important economic fruit crop in Kenya, grown for domestic, regional and international markets. However, passion fruit production is constrained by both biotic and abiotic stresses. Passion fruit woodiness disease (PWD) complex is the most injurious viral disease responsible for yield losses of up to 100%. In East Africa, it is caused by potyviruses. The most effective way to manage PWD is by using resistant cultivars. The objectives of this study were to determine the occurrence of passion fruit woodiness disease in selected counties at the Coastal lowlands of Kenya and screen farmer preferred passion fruit genotypes for resistance to PWD. RESULTS: In the present study, it was established that all surveyed farms in Kwale and Kilifi counties displayed passion fruit woodiness virus disease symptoms. The highest disease incidence of 59.16% and 51.43% was observed at Kilifi and Kwale counties, respectively. A significant difference (p < 0.05) in symptom severity was observed within the tested genotypes with purple and banana passion fruits having the highest and lowest AUDPC values, respectively, both under greenhouse and field conditions. ACP ELISA assays using universal potyvirus antiserum (Agdia Inc., Elkhat, IN) confirmed that the observed characteristic symptoms of woodiness disease were as a result of potyvirus infection. CONCLUSIONS: The findings herein indicate that PWD is widespread in both Kilifi and Kwale counties with low to moderate disease incidence and severity. The observed prevalence, incidence and severity levels of PWD in Kwale and Kilifi counties could be aggravated by poor management practices such as non-sterilization of pruning tools, intercropping with target crops and crop rotation with the same target crops. Response of passion fruit genotypes to woodiness viruses was genotype dependent. There is need to sensitize farmers on the cause and spread of PWD and management strategies in order to increase production and enhance the quality of fruits.


Asunto(s)
Passiflora , Passiflora/genética , Frutas , Kenia , Genotipo , Madera
17.
Evolution ; 77(11): 2528-2529, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37668007

RESUMEN

How has urbanization altered the relationships between species and selection on phenotypes? To address this question, Palacio and Ordano measured trait and frugivore selection in blue passionflower (Passiflora caerulea) in three different localities. Their analysis revealed changes in avian selection with urbanization, which altered population phenotypes.


Asunto(s)
Cadena Alimentaria , Passiflora , Animales , Urbanización , Passiflora/genética , Aves/genética , Fenotipo
18.
Appl Microbiol Biotechnol ; 107(18): 5651-5668, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37505288

RESUMEN

Two forms of the genus Passiflora, belonging to the Passifloraceae family, are commonly called yellow and purple passion. These perennial woody climbers are found in the cooler regions at higher altitudes and in lowlands of tropical areas. The presence of alkaloids, terpenes, stilbenes, flavonoids, glycosides, carotenoids, etc. in different parts of the plant provides several pharmacological properties. Because of the various uses in foods and pharmaceuticals, in vitro propagation of this genus has been performed hugely and is of great interest to researchers. From different explants via direct organogenesis under controlled aseptic conditions, callus, root, shoot, and somatic embryos are induced successfully. Different PGRs are augmented in the media for the rapid multiplication or organogenesis, especially, the high ratio of cytokinin and auxin in the basal media efficiently regenerates the shoot and root respectively. The in vitro regenerated plantlets are then acclimatized and hardened properly before transferring to the field conditions. Thus, the present first of its kind review on P. edulis exclusively encompasses the wide applications of biotechnology for this species alongside its organogenesis, embryogenesis, cytology, and endophytic microbes with special emphasis on the role of genetic transformation studies mediated by Agrobacterium sp. KEY POINTS: • Critical assessment on in vitro biotechnology in P. edulis. • Agrobacterium-mediated transformation in P. edulis. • Role of endophytic microbes in P. edulis.


Asunto(s)
Agrobacterium , Passiflora , Agrobacterium/genética , Passiflora/genética , Biotecnología , Flavonoides , Glicósidos
19.
Mol Biol Rep ; 50(5): 4133-4144, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36877350

RESUMEN

BACKGROUND: Genetic variability is the most important parameter in plant breeding based on selection. There is a need for morpho-agronomic and molecular characterization of Passiflora species, to exploit their genetic resources more efficiently. No study has yet been carried out to compare half-sib and full-sib families in relation to the magnitude of the genetic variability obtained in them, and then to elucidate the advantages or disadvantages of each one. METHODS AND RESULTS: In the present study, SSR markers were used to evaluate the genetic structure and diversity of half-sib and full-sib progenies of sour passion fruit. Two full-sib progenies (PSA and PSB), and a half-sib progeny (PHS), together with their parents, were genotyped with a set of eight pairs of SSR markers. Discriminant Analysis of Principal Components (DAPC) and Structure software were used to study the genetic structure of the progenies. The results indicate that the half-sib progeny has lower genetic variability, although it has higher allele richness. By the AMOVA most of the genetic variability was found within the progenies. Three groups were clearly observed in the DAPC analysis, while two hypothetical groups (k = 2) were observed in the Bayesian approach. The PSB progeny showed a high genetic mixture between the PSA and PHS progenies. CONCLUSION: Lower genetic variability is found in half-sib progenies. The results obtained here allow us to suppose that the selection within full-sib progenies will possibly provide better estimates of genetic variance in sour passion fruit breeding programs, since they provide greater genetic diversity.


Asunto(s)
Passiflora , Humanos , Masculino , Passiflora/genética , Frutas/genética , Teorema de Bayes , Antígeno Prostático Específico , Fitomejoramiento , Variación Genética
20.
PeerJ ; 11: e14839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751639

RESUMEN

High temperature in summer is an unfavorable factor for passion fruit (Passiflora edulis), which can lead to restricted growth, short flowering period, few flower buds, low fruit setting rate, severe fruit drop, and more deformed fruit. To explore the molecular physiology mechanism of passion fruit responding to high-temperature stress, we use 'Zhuangxiang Mibao', a hybrid passion fruit cultivar, as the test material. Several physiological indicators were measured and compared between high-temperature (average temperature 38 °C) and normal temperature (average temperature 25 °C) conditions, including photosynthesis, chlorophyll fluorescence parameters, peroxidase activity (POD), superoxide dismutase activity (SOD) and malondialdehyde content. We performed RNA-seq analysis combined with biochemistry experiment to investigate the gene and molecular pathways that respond to high-temperature stress. The results showed that some physiological indicators in the high-temperature group, including the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, and the maximum chemical quantum yield of photosystemII (PSII), were significantly lower than those of the control group. Malondialdehyde content was substantially higher than the control group, while superoxide dismutase and superoxide dismutase activities decreased to different degrees. Transcriptome sequencing analysis showed that 140 genes were up-regulated and 75 genes were down-regulated under high-temperature stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of differentially expressed genes revealed many metabolic pathways related to high-temperature stress. Further investigation revealed that 30 genes might be related to high-temperature stress, such as chlorophyllide a oxygenase (CAO), glutathione (GSH), WRKY transcription factors (WRKY), and heat shock protein (HSP), which have also been reported in other species. The results of real-time fluorescence quantitative PCR and RNA-seq of randomly selected ten genes are consistent, which suggests that the transcriptome sequencing results were reliable. Our study provides a theoretical basis for the mechanism of passion fruit response to high-temperature stress. Also, it gives a theoretical basis for the subsequent breeding of new heat-resistant passion fruit varieties.


Asunto(s)
Passiflora , Temperatura , Passiflora/genética , Frutas/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Superóxido Dismutasa/metabolismo , Malondialdehído
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA