Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 172: 105785, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150554

RESUMEN

The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).


Asunto(s)
Glucosa , Pasteurellaceae , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Adenosina/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Amino Azúcares/metabolismo , Benzoatos/metabolismo , Biotina/genética , Biotina/metabolismo , Glucosa/metabolismo , Metaboloma , Metano , Nucleótidos/metabolismo , Fosfatos , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Piruvatos/metabolismo , ARN Mensajero/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Terpenos , Transcriptoma , Pasteurellaceae/enzimología
2.
Infect Immun ; 89(5)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526563

RESUMEN

Siglecs are sialic acid-binding immunoglobulin-like lectins that play an important role in tissue homeostasis, immune response, and pathogen infection. Bacterial sialidases act on natural ligands of Siglecs, interfering with the Siglec-mediated immune response. Glaesserella parasuis is a porcine bacterial pathogen that secretes sialidase. However, little is known about the sialidase of G. parasuis and its impact on immune regulation. Here, we used wild-type G. parasuis, a sialidase-deficient mutant, and complementary strains to investigate the role of sialidase in porcine alveolar macrophage infection. Sialidase induced the release of proinflammatory cytokines, such as interleukin-1α (IL-1α), IL-6, and tumor necrosis factor alpha, from porcine alveolar macrophages. Moreover, sialidase desialylated the surface of porcine alveolar macrophages and altered the expression of Siglecs (the expression of Siglec-5 was reduced). Furthermore, sialidase led to a reduction in endogenous SH2 domain-containing protein tyrosine phosphatase (SHP-2) recruitment to Siglec-5 and simultaneously activated the inflammatory response via the mitogen-activated protein kinase and nuclear factor kappa light chain enhancer of activated B cell signaling pathways. This desialylation occurred before the release of proinflammatory cytokines, suggesting that the sialidase-induced inflammatory response was followed by reduced recruitment of SHP-2 to Siglec-5. Thus, this study is the first to demonstrate the role of sialidase in the inflammatory response of G. parasuis. This role resulted from the abrogation of negative regulation of Siglec-5 on proinflammatory cytokine release. This study helps to understand the molecular mechanism underlying the inflammatory response induced by sialidase secreted by G. parasuis and the acute inflammation caused by G. parasuis.


Asunto(s)
Neuraminidasa/metabolismo , Pasteurellaceae/enzimología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Infecciones por Pasteurellaceae/veterinaria , Procesamiento Proteico-Postraduccional , Porcinos , Enfermedades de los Porcinos
3.
J Agric Food Chem ; 68(42): 11765-11773, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33030899

RESUMEN

Here, we first developed a combined strain improvement strategy of biosensor-guided atmospheric and room-temperature plasma mutagenesis and genome shuffling. Application of this strategy resulted in a 2.7-fold increase in the production of shikimic acid (SA) and a 2.0-fold increase in growth relative to those of the starting strain. Whole-cell resequencing of the shuffled strain and confirmation using CRISPRa/CRISPRi revealed that some membrane protein-related mutant genes are identified as being closely related to the higher SA titer. The engineered shuffling strain produced 18.58 ± 0.56 g/L SA from glucose with a yield of 68% (mol/mol) by fed-batch whole-cell biocatalysis, achieving 79% of the theoretical maximum. Sucrose-utilizing Escherichia coli was engineered for SA production by introducing Mannheimia succiniciproducens ß-fructofuranosidase gene. The resulting sucrose-utilizing E. coli strain produced 24.64 ± 0.32 g/L SA from sucrose with a yield of 1.42 mol/mol by fed-batch whole-cell biocatalysis, achieving 83% of the theoretical maximum.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Shikímico/metabolismo , Sacarosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Barajamiento de ADN , Ingeniería Metabólica , Mutagénesis , Pasteurellaceae/enzimología , Pasteurellaceae/genética , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
4.
Nat Commun ; 11(1): 1970, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327663

RESUMEN

Succinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Malate dehydrogenase (MDH) is one of the key enzymes for SA production, but has not been well characterized. Here we report biochemical and structural analyses of various MDHs and development of hyper-SA producing M. succiniciproducens by introducing the best MDH. Corynebacterium glutamicum MDH (CgMDH) shows the highest specific activity and least substrate inhibition, whereas M. succiniciproducens MDH (MsMDH) shows low specific activity at physiological pH and strong uncompetitive inhibition toward oxaloacetate (ki of 67.4 and 588.9 µM for MsMDH and CgMDH, respectively). Structural comparison of the two MDHs reveals a key residue influencing the specific activity and susceptibility to substrate inhibition. A high-inoculum fed-batch fermentation of the final strain expressing cgmdh produces 134.25 g L-1 of SA with the maximum productivity of 21.3 g L-1 h-1, demonstrating the importance of enzyme optimization in strain development.


Asunto(s)
Proteínas Bacterianas/genética , Malato Deshidrogenasa/genética , Pasteurellaceae/metabolismo , Ácido Succínico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Reactores Biológicos , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Fermentación , Cinética , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Ingeniería Metabólica , Ácido Oxaloacético/metabolismo , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Int J Biol Macromol ; 149: 593-599, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32001289

RESUMEN

Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens ß-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.


Asunto(s)
Escherichia coli/genética , Ingeniería Metabólica , Polihidroxialcanoatos/biosíntesis , Sacarosa/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Poliésteres/metabolismo , Polihidroxialcanoatos/química , Polihidroxialcanoatos/genética , Sacarosa/química , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
6.
Int J Biol Macromol ; 147: 170-176, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31923511

RESUMEN

Bacterial UDP-N-acetyl-d-glucosamine:heparosan alpha-1, 4-N-acetyl-d-glucosaminyltransferases (KfiAs) are in high demand for the development of animal-free heparin (HP) production. Until now, EcKfiA from Escherichia coli O10:K5:H4 was the sole identified member of this family. The lack of known members has limited research into molecular structure and catalytic mechanism of the KfiA superfamily, and restricted its application in enzymatic glycan synthesis. Herein, we report the identification and characterization of Gallibacterium anatis GaKfiA, doubling the number of known members of the KfiA family. GaKfiA is a monofunctional enzyme that transfers N-acetyl-d-glucosamine (GlcNAc) residues from their nucleotide forms to the nonreducing ends of saccharide chains structurally equivalent to the backbone of HP. The catalytic efficiency of GaKfiA is lower than that of EcKfiA. However, a single mutation of GaKfiA, N56D, resulted in a drastic increase in kcat/Km compared with wild-type GaKfiA. These data once again indicate the key role of a complete DXD motif for the catalytic efficiency of glycosyltransferases. This study deepens understanding of the mechanism of KfiA, and will assist in research into animal-free HP production.


Asunto(s)
Disacáridos/metabolismo , Glicosiltransferasas/metabolismo , Pasteurellaceae/enzimología , Uridina Difosfato N-Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Escherichia coli/enzimología , Glicosiltransferasas/química , Cinética , Proteínas Mutantes/metabolismo , Análisis de Secuencia de Proteína , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/química
8.
J Biol Chem ; 286(37): 32834-42, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21795713

RESUMEN

A new family of adenylyltransferases, defined by the presence of a Fic domain, was recently discovered to catalyze the addition of adenosine monophosphate (AMP) to Rho GTPases (Yarbrough, M. L., Li, Y., Kinch, L. N., Grishin, N. V., Ball, H. L., and Orth, K. (2009) Science 323, 269-272; Worby, C. A., Mattoo, S., Kruger, R. P., Corbeil, L. B., Koller, A., Mendez, J. C., Zekarias, B., Lazar, C., and Dixon, J. E. (2009) Mol. Cell 34, 93-103). This adenylylation event inactivates Rho GTPases by preventing them from binding to their downstream effectors. We reported that the Fic domain(s) of the immunoglobulin-binding protein A (IbpA) from the pathogenic bacterium Histophilus somni adenylylates mammalian Rho GTPases, RhoA, Rac1, and Cdc42, thereby inducing host cytoskeletal collapse, which allows H. somni to breach alveolar barriers and cause septicemia. The IbpA-mediated adenylylation occurs on a functionally critical tyrosine in the switch 1 region of these GTPases. Here, we conduct a detailed characterization of the IbpA Fic2 domain and compare its activity with other known Fic adenylyltransferases, VopS (Vibrio outer protein S) from the bacterial pathogen Vibrio parahaemolyticus and the human protein HYPE (huntingtin yeast interacting protein E; also called FicD). We also included the Fic domains of the secreted protein, PfhB2, from the opportunistic pathogen Pasteurella multocida, in our analysis. PfhB2 shares a common domain architecture with IbpA and contains two Fic domains. We demonstrate that the PfhB2 Fic domains also possess adenylyltransferase activity that targets the switch 1 tyrosine of Rho GTPases. Comparative kinetic and phylogenetic analyses of IbpA-Fic2 with the Fic domains of PfhB2, VopS, and HYPE reveal important aspects of their specificities for Rho GTPases and nucleotide usage and offer mechanistic insights for determining nucleotide and substrate specificities for these enzymes. Finally, we compare the evolutionary lineages of Fic proteins with those of other known adenylyltransferases.


Asunto(s)
Proteínas Bacterianas/química , Evolución Molecular , Proteínas de la Membrana/química , Nucleotidiltransferasas/química , Pasteurellaceae/enzimología , Proteínas Bacterianas/genética , Humanos , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Pasteurellaceae/genética , Estructura Terciaria de Proteína , Vibrio parahaemolyticus/enzimología , Vibrio parahaemolyticus/genética
9.
PLoS One ; 6(4): e18929, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21533109

RESUMEN

Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1ß, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1ß receptor has been identified, current knowledge of the bacterial IL-1ß sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1ß than inactive ones. The effect of IL-1ß on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1ß to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1ß, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1ß and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1ß slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1ß. Our results suggest that IL-1ß might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit ß interacted with IL-1ß, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1ß during inflammation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopolímeros/metabolismo , Interleucina-1beta/metabolismo , Pasteurellaceae/enzimología , Biopelículas , Citometría de Flujo , Humanos , Microscopía Electrónica de Transmisión , Unión Proteica
10.
J Bacteriol ; 192(23): 6240-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20889741

RESUMEN

Aggregatibacter actinomycetemcomitans is an opportunistic pathogen that resides primarily in the mammalian oral cavity. In this environment, A. actinomycetemcomitans faces numerous host- and microbe-derived stresses, including intense competition for nutrients and exposure to the host immune system. While it is clear that A. actinomycetemcomitans responds to precise cues that allow it to adapt and proliferate in the presence of these stresses, little is currently known about the regulatory mechanisms that underlie these responses. Many bacteria use noncoding regulatory RNAs (ncRNAs) to rapidly alter gene expression in response to environmental stresses. Although no ncRNAs have been reported in A. actinomycetemcomitans, we propose that they are likely important for colonization and persistence in the oral cavity. Using a bioinformatic and experimental approach, we identified three putative metabolite-sensing riboswitches and nine small regulatory RNAs (sRNAs) in A. actinomycetemcomitans during planktonic and biofilm growth. Molecular characterization of one of the riboswitches revealed that it is a lysine riboswitch and that its target gene, lysT, encodes a novel lysine-specific transporter. Finally, we demonstrated that lysT and the lysT lysine riboswitch are conserved in over 40 bacterial species, including the phylogenetically related pathogen Haemophilus influenzae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Lisina/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Riboswitch , Biología Computacional , Haemophilus influenzae/genética , Proteínas de Transporte de Membrana/genética
11.
FEMS Microbiol Lett ; 302(1): 52-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19895641

RESUMEN

The qpo gene of Aggregatibacter actinomycetemcomitans encodes a triheme c-containing membrane-bound enzyme, quinol peroxidase (QPO) that catalyzes peroxidation reaction in the respiratory chain and uses quinol as the physiological electron donor. The QPO of A. actinomycetemcomitans is the only characterized QPO, but homologues of the qpo gene are widely distributed among many gram-negative bacteria, including Haemophils ducreii, Bacteroides fragilis, and Escherichia coli. One-third of the amino acid sequence of QPO from the N-terminal end is unique, whereas two-thirds of the sequence from the C-terminal end exhibits high homology with the sequence of the diheme bacterial cytochrome c peroxidase. In order to obtain sufficient protein for biophysical studies, the present study aimed to overproduce recombinant QPO (rQPO) from A. actinomycetemcomitans in E. coli. Coexpression of qpo with E. coli cytochrome c maturation (ccm) genes resulted in the expression of an active QPO with a high yield. Using purified rQPO, we determined the midpoint reduction potentials of the three heme molecules.


Asunto(s)
Pasteurellaceae/enzimología , Peroxidasas/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Hemo/química , Hemo/metabolismo , Humanos , Hidroquinonas/química , Hidroquinonas/metabolismo , Cinética , Oxidación-Reducción , Pasteurellaceae/genética , Infecciones por Pasteurellaceae/complicaciones , Infecciones por Pasteurellaceae/microbiología , Periodontitis/etiología , Peroxidasas/química , Peroxidasas/genética , Proteínas Recombinantes/genética
12.
DNA Seq ; 18(4): 265-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17541831

RESUMEN

The putative uridine diphosphate (UDP)-galactose 4-epimerase encoding gene, galE, was isolated from Avibacterium paragallinarum with the use of degenerate primers, colony hybridization and inverse PCR. The data revealed an open reading frame of 1017 bp encoding a protein of 338 amino acids with a molecular weight of 37 kDa and an isoelectric point of 5.5. High sequence homology was obtained with an 87, 91 and 89% sequence identity on protein level towards the galE genes from Actinobacillus pleuropneumoniae, Haemophilus influenza and Pasteurella multocida, respectively. To verify that the cloned galE gene encodes for a UDP-galactose 4-epimeras, this gene was cloned into the pYES-2 expression vector, followed by transformation in a Saccharomyces cerevisiae gal10 deletion strain. Complementation of the gal10 deletion mutant with the galE gene confirmed that this gene encodes a UDP-galactose 4-epimerase.


Asunto(s)
Clonación Molecular , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Análisis de Secuencia de ADN , UDPglucosa 4-Epimerasa/genética , Secuencia de Aminoácidos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae
13.
J Clin Microbiol ; 43(5): 2307-14, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15872260

RESUMEN

The identification of Pasteurella and related bacteria remains a challenge. Here, a 449- to 473-bp fragment (sodA(int)) internal to the sodA gene, encoding the manganese-dependent superoxide dismutase, was amplified and sequenced with a single pair of degenerate primers from the type strains of Pasteurella (18 strains), Gallibacterium (1 strain), and Mannheimia (5 strains) species. The sodA(int)-based phylogenetic tree was in general agreement with that inferred from the analysis of the corresponding 16S rRNA gene sequences, with members of the Pasteurella sensu stricto cluster (Pasteurella multocida, Pasteurella canis, Pasteurella dagmatis, and Pasteurella stomatis) forming a monophyletic group and Gallibacterium and Mannheimia being independent monophyletic genera. However, the sodA(int) sequences showed a markedly higher divergence than the corresponding 16S rRNA genes, confirming that sodA is a potent target to differentiate related species. Thirty-three independent human clinical isolates phenotypically assigned to 13 Pasteurella species by a reference laboratory were successfully identified by comparing their sodA(int) sequences to those of the type species. In the course of this work, we identified the first Gallibacterium anatis isolate ever reported from a human clinical specimen. The sodA(int) sequences of the clinical isolates displayed less than 2.5% divergence from those of the corresponding type strains, except for the Pasteurella pneumotropica isolates, which were closely related to each other (> 98% sodA(int) sequence identity) but shared only 92% sodA(int) identity with the type strain. The method described here provides a rapid and accurate tool for species identification of Pasteurella isolates when access to a sequencing facility is available.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Pasteurella/diagnóstico , Pasteurella/aislamiento & purificación , Pasteurellaceae/aislamiento & purificación , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Pasteurella/clasificación , Pasteurella/enzimología , Pasteurella/genética , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...