Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Food Res Int ; 194: 114841, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232502

RESUMEN

The present study investigated the impact of filtration, creaming and pasteurization on the authentication of the botanical origin of honey using the dilute-and-shoot method in liquid chromatography coupled to mass spectrometry (LC-MS). The analytical method performances were satisfactory (analyte recoveries ranging from 95 % to 103 % and inter-day precision below 12 %). Three types of raw honeys including blueberry, canola and clover were processed under controlled conditions. Filtration, creaming and pasteurization had no impact on honey botanical classification based on the LC-MS fingerprint, and the key molecular fingerprints were retained after processing. However, results revealed that testing the impact of processing is essential when selecting honey authenticity markers because some candidates (e.g. adenosine) are not stable or can be removed during honey processing. The results of the present study also highlighted the suitability of the dilute-and-shoot approach to both develop authentication tools for honey and study the impact of processing methods on specific chemicals in honeys.


Asunto(s)
Filtración , Manipulación de Alimentos , Miel , Pasteurización , Miel/análisis , Miel/clasificación , Pasteurización/métodos , Cromatografía Liquida/métodos , Manipulación de Alimentos/métodos , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis
2.
Compr Rev Food Sci Food Saf ; 23(5): e13425, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136978

RESUMEN

Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.


Asunto(s)
Manipulación de Alimentos , Frutas , Ondas de Radio , Verduras , Frutas/química , Verduras/química , Manipulación de Alimentos/métodos , Pasteurización/métodos , Calor
3.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201356

RESUMEN

Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.


Asunto(s)
Ácidos Grasos , Leche , Animales , Leche/química , Ácidos Grasos/análisis , Calor , Proteínas de la Leche/análisis , Proteínas de la Leche/química , Pasteurización/métodos , Manipulación de Alimentos/métodos , Gusto , Humanos , Nutrientes/análisis , Biomarcadores
4.
Food Res Int ; 191: 114688, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059944

RESUMEN

Ultra-high-pressure (UHP1) technology for cold pasteurization is a viable alternative to traditional heat sterilization for preserving food nutrients and flavor compounds during fruit juice processing. In this study, cutting-edge techniques, including high-throughput sequencing technology, intelligent bionic sensory systems, and metabolomics, were used to examine the impact of UHP treatment on microbial community composition, odor, and taste quality of jujube juice. The UHP treatment demonstrated its effect by inducing a reddish-yellow color in the jujube juice, thereby enhancing its brightness, overall color, and stability. The most significant enhancement was observed at 330 MPa. The microorganisms responsible for spoilage and deterioration of jujube juice during storage were categorized into three clusters: bacterial clusters at 0-330 MPa, 360-450 MPa, and 480-630 Mpa. The results showed no distinct distribution patterns for fungi based on the pressure strength. The dominant bacterial genera were Lactobacillus, Nocardia, Achromobacter, Enterobacter, Pseudomonas, Mesorhizobium, and Rhodococcus, whereas the dominant fungal genera were yeast and mold. Notably, Lactobacillus, Achromobacter, Enterobacter, and Pseudomonas were responsible for the significant differences between the 360 MPa to 450 MPa and 480 MPa to 630 MPa clusters in terms of bacterial spoilage, whereas Torulaspora, Lodderomyces, Wickerhamomyces, and Fusarium were the primary fungal spoilage genera. UHP treatment exerted no significant impact on the taste of jujube juice but influenced its sourness. Treatment at 330 MPa had the most pronounced effect on the presence of aromatic compounds and other odorants, which were substantially increased. Further analysis revealed the prevalence of organic acids, such as malic acid, succinic acid, and tartaric acid, in jujube juice and demonstrated a consistent relationship between changes in organic acids and sourness. In addition, nine distinct odorants with VIP values greater than 1 were identified in the jujube juice. Among these, methyl acetate and methyl caproate exhibited substantial increases following the UHP treatment at 330 MPa.


Asunto(s)
Jugos de Frutas y Vegetales , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolómica , Microbiota , Gusto , Ziziphus , Ziziphus/microbiología , Jugos de Frutas y Vegetales/microbiología , Metabolómica/métodos , Odorantes/análisis , Bacterias/clasificación , Bacterias/genética , Presión , Microbiología de Alimentos/métodos , Manipulación de Alimentos/métodos , Pasteurización/métodos , Hongos , Humanos
5.
Int J Food Microbiol ; 422: 110823, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38991433

RESUMEN

Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.


Asunto(s)
Antiinfecciosos , Antioxidantes , Queso , Emulsiones , Aceites Volátiles , Antioxidantes/farmacología , Queso/microbiología , Queso/análisis , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Conservación de Alimentos/métodos , Microbiología de Alimentos , Pasteurización/métodos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
6.
J Pediatr Gastroenterol Nutr ; 79(2): 362-370, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899575

RESUMEN

INTRODUCTION: Pasteurized human donor milk (DM) is frequently used for feeding preterm newborns and extrauterine growth-restricted (EUGR) infants. Most human milk banks performed a pasteurization of DM using the standard method of Holder pasteurization (HoP) which consists of heating milk at 62.5°C for 30 min. High hydrostatic pressure (HHP) processing was proposed to be an innovative nonthermal method to pasteurize DM. However, the effect of different modes of DM pasteurization on body growth, intestinal maturation, and microbiota has never been investigated in vivo during the lactation. OBJECTIVES: We aimed to study these effects in postnatally growth-restricted (PNGR) mice pups daily supplemented with HoP-DM or HHP-DM. METHODS: PNGR was induced by increasing the number of pups per litter (15 pups/mother) at postnatal Day 4 (PND4). From PND8 to PND20, mice pups were supplemented with HoP-DM or HHP-DM. At PND21, the intestinal permeability was measured in vivo, the intestinal mucosal histology, gut microbiota, and short-chain fatty acids (SCFAs) level were analyzed. RESULTS: HHP-DM pups displayed a significantly higher body weight gain than HoP-DM pups during lactation. At PND21, these two types of human milk supplementations did not differentially alter intestinal morphology and permeability, the gene-expression level of several mucosal intestinal markers, gut microbiota, and the caecal SCFAs level. CONCLUSION: Our data suggest that HHP could be an attractive alternative to HoP and that HHP-DM may ensure a better body growth of preterm and/or EUGR infants.


Asunto(s)
Animales Recién Nacidos , Presión Hidrostática , Leche Humana , Pasteurización , Animales , Pasteurización/métodos , Ratones , Humanos , Femenino , Lactancia , Microbioma Gastrointestinal , Trastornos del Crecimiento/etiología , Aumento de Peso , Masculino , Bancos de Leche Humana
7.
Adv Nutr ; 15(6): 100229, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38908896

RESUMEN

BACKGROUND: Donor human milk (DHM) is an essential source of nutrition among high-risk infants (e.g., premature and low-birth weight). Holder pasteurization, a common step in DHM processing, is known to partially alter the composition of DHM; however, the impact on fat composition is historically inconsistent. OBJECTIVES: This scoping review aimed to broadly review the literature on the impact of Holder pasteurization on the fat content in DHM, with a focus on preanalytical sample mixing. METHODS: A systematic search of original, peer-reviewed research articles was conducted on 11 July, 2022. Articles were included if they compared matched raw (control) and Holder-pasteurized human milk samples and measured total lipids, cholesterol, and individual classes of fatty acids. Article review and selection was conducted by 2 independent reviewers. RESULTS: The search yielded 26 original, peer-reviewed research articles published between 1978 and 2022. Overall methodology varied considerably between studies. When study methods described any mixing for collecting raw milk, 1 (17%) of the 6 of studies reported a small change in total fat concentration following pasteurization (<5%). Alternatively, among studies that did not describe methods for mixing raw milk to ensure a representative sample, 10 (56%) of the 18 reported a significant change (≥± 5%) in total fat concentration, with changes ranging from -28.6% to +19.4%. CONCLUSIONS: This review suggests that inconsistent findings regarding the impact of Holder pasteurization on fat may be related to study methodologies, particularly preanalytical sample mixing. More research considering the role of preanalytical handling procedures and methodologies is necessary to help clarify the impact of Holder pasteurization on human milk composition.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Pasteurización , Leche Humana/química , Humanos , Pasteurización/métodos , Lípidos/análisis , Grasas/análisis , Ácidos Grasos/análisis , Femenino , Manipulación de Alimentos/métodos , Colesterol/análisis
8.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892622

RESUMEN

Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.


Asunto(s)
Ácidos Grasos , Leche Humana , Pasteurización , Humanos , Leche Humana/química , Femenino , Pasteurización/métodos , Ácidos Grasos/análisis , Lactante , Adulto , Recién Nacido , Factores Sexuales , Embarazo , Lactancia , Parto Obstétrico/métodos , Hungría , Bancos de Leche Humana
9.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38832658

RESUMEN

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Asunto(s)
Leche , Pasteurización , Animales , Pasteurización/métodos , Leche/virología , Bovinos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Humanos , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/prevención & control , Gripe Aviar/epidemiología , Inactivación de Virus , Estados Unidos , Gripe Humana/virología , Gripe Humana/transmisión , Gripe Humana/prevención & control , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Femenino
10.
Matern Child Nutr ; 20 Suppl 4: e13657, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752309

RESUMEN

Mother's/parent milk is the optimal way to feed infants and when unavailable, supplemental donor human milk is preferred. A safe supply of donor human milk should be available for all low birthweight infants for whom it has been shown to reduce morbidity. Human milk banking has been in existence for more than a century, although largely shut down during the 1980s, primarily due to fears of human immunodeficiency virus transmission. With renewed security in milk banking, has come an exponential growth in human donor milk use. Guidelines for milk banking have been published in many countries including Australia, France, India, Italy, Spain, Switzerland, the United Kingdom and the nonprofit organization PATH. The European Milk Bank Association and the Human Milk Banking Association of North America have also published recommendations for milk banks throughout Europe and North America, respectively. Although there is variability among these guidelines, there is general consensus on quality control measures required to provide a supply of safe donor milk. These measures include effective donor screening, safe collection, transport and storage of milk, standardized pasteurization and bacteriological testing. Operational considerations are also critical, such as appropriate training for staff, equipment maintenance and cleaning, protocol and record keeping and inspection and accreditation. Clearly delineating these key quality control measures provides an excellent foundation for establishing international guidelines. Acceptable modifications must be established for low- and middle-income countries that do not have sufficient resources; overly burdensome guidelines may make establishing a milk bank unnecessarily prohibitive. This review presents a summary of current best practices for human milk banking.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Bancos de Leche Humana/normas , Humanos , Control de Calidad , Pasteurización/métodos , Recién Nacido , Guías de Práctica Clínica como Asunto , Lactante , Femenino
11.
Food Res Int ; 186: 114332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729715

RESUMEN

The protein instability with haze formation represents one of the main faults occurring in white and rosé wines. Among the various solutions industrially proposed, aspergillopepsin I (AP-I) supplementation coupled with must heating (60-75 °C) has been recently approved by OIV and the European Commission for ensuring protein stability of wines. This study investigates the impact of AP-I either applied independently or in combination with flash pasteurization on the chemical composition of grape must and wines derived from Sauvignon Blanc and Gewürztraminer. The efficacy on protein stability of a complete treatment combining heat (70 °C) and AP-I (HP) was confirmed through heat test and bentonite requirement, although no differences were observed between must heating and HP treatments. However, high-performance liquid chromatography analysis of unstable pathogenesis-related proteins revealed that AP-I supplementation reduced chitinases and thaumatin-like proteins compared to the non-enzymed samples, with and without must heating. Amino acid increase was reported only in HP musts, particularly in Sauvignon Blanc. The concentration of yeast-derived aroma compounds in Gewürztraminer wines was increased by must heating; compared to controls, flash pasteurization rose the overall acetate esters content of 85 % and HP of 43 %, mostly due to isoamyl acetate. However, heat treatments -with or without AP-I- reduced terpenes up to 68 %. Despite the different aroma profiles, no differences were observed for any descriptor for both varieties in wine tasting, and only a slight decrease trend was observed for the floral intensity and the typicality descriptors in heated wines.


Asunto(s)
Odorantes , Pasteurización , Vitis , Vino , Manipulación de Alimentos/métodos , Calor , Odorantes/análisis , Pasteurización/métodos , Estabilidad Proteica , Vitis/química , Vino/análisis
12.
J Agric Food Chem ; 72(21): 12198-12208, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752986

RESUMEN

Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.


Asunto(s)
Bacterias , Leche Humana , Pasteurización , Rayos Ultravioleta , Humanos , Leche Humana/química , Leche Humana/efectos de la radiación , Pasteurización/métodos , Bacterias/efectos de la radiación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Proteínas de la Leche/química , Irradiación de Alimentos/métodos , Lípidos/química , Vitaminas/análisis , Vitamina E/farmacología
13.
J Sci Food Agric ; 104(12): 7713-7721, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38591367

RESUMEN

BACKGROUND: Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non-thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS: The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6-logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ-helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION: The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.


Asunto(s)
Electrones , Irradiación de Alimentos , Cabras , Leche , Animales , Leche/microbiología , Leche/química , Leche/efectos de la radiación , Irradiación de Alimentos/métodos , Proteínas de la Leche/química , Bacterias/efectos de la radiación , Pasteurización/métodos , Microbiología de Alimentos
14.
Nutrients ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474836

RESUMEN

High hydrostatic pressure (HHP) is a non-thermal pasteurization technology for the enhancement of food products' safety and quality. The components of tomato juice can be affected by HHP processing. Little is known about the effects of HHP-processed tomato juice on the gut microbiome and metabolism. Here, we performed high-throughput sequencing and metabolomics profiling to determine the critical differences in gut microbiota structure and metabolic profiles in mice administered with HHP-processed tomato juice. Tomato juice administration significantly increased the gut bacterial alpha diversity and the relative abundance of Bacteroides. The mice administered with HHP-processed tomato juice were characterized by the enrichment of Bacteroidetes, Alistieps, and Faecalibaculum compared with those administered with HTST-processed tomato juice. Moreover, HHP-processed tomato juice promoted SCFA levels, which were positively correlated with the enriched Alistieps. Our results show that HHP-processed tomato juice may drive healthy gut microbes and metabolites.


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Animales , Ratones , Presión Hidrostática , Pasteurización/métodos , Metaboloma
15.
Int J Food Microbiol ; 415: 110632, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38428167

RESUMEN

The objectives of this research were to study the effect of UV irradiation on quality characteristics of mango juice during cold storage. Mango juice exposed to UV radiation was also used to determine zero-order and first-order kinetic models of microbial (total plate count, yeast and mold count, and Escherichia coli) reduction. According to the microbiological results, UV light at 120 J/cm2 caused a 5.19 log reduction. It was found that microbial inactivation of all tested microorganisms followed first-order kinetic model. The treatments did not differ significantly in terms of the quality metrics. L*, b*, pH, total soluble solid, total phenolic compound, total flavonoid content, and antioxidant activity as measured by the DPPH and FRAP assay all tended to decline during storage at 4 °C, whereas a*, ∆E, titratable acidity, total plate count, yeast and mold count, as well as the total plate count, had an increasing trend. During storage at 4 °C, UV irradiation increased the shelf life of mango juice by about 14 days compared to the control sample. In conclusion, this study demonstrated the potential of UV treatment as an alternative to thermal pasteurization for preserving mango juice quality and safety while also prolonging shelf life.


Asunto(s)
Mangifera , Pasteurización , Pasteurización/métodos , Rayos Ultravioleta , Saccharomyces cerevisiae/efectos de la radiación , Antioxidantes/análisis
16.
Food Chem ; 446: 138881, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428086

RESUMEN

Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.


Asunto(s)
Clara de Huevo , Pasteurización , Pasteurización/métodos , Clara de Huevo/química , Agregado de Proteínas , Huevos , Solubilidad
17.
J Food Sci ; 89(3): 1755-1772, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328957

RESUMEN

Cold-pressed sugarcane juice (SCJ) is a beverage rich in vitamins, carbohydrates, and antioxidants. Various sterilization methods impact fruit juice's appearance, nutrients, and flavor. Hence, this study aims to assess how different sterilization techniques affect the flavor, appearance, and nutritional value of SCJ. Freshly prepared SCJs were subjected to two sterilization methods: pasteurization (referred to as PTG) and autoclaving (referred to as HTHP). The pasteurization process was carried out at 63°C for 30 min, whereas the HTHP process was applied at 115°C for 30 min. The appearances, Brix value, colors, sugar, organic acid content, and aromatic compounds were determined. The Brix and pH values of the juice show little variation across different heat treatments. The color index of PTG was similar to that of the control group, whereas the L* value of HTHP increased about 21%, resulting in a significant color change. The glucose and fructose contents of HTHP were 7.03 and 5.41 mg/mL, which were much higher than those of PTG (3.26 and 2.33 mg/mL) and control group (3.33 and 2.48 mg/mL). A total of 77 aromatic compounds were identified in the SCJ after various heat treatments. Among them, pentanoic acid, octanal, and ß-damascenone were the most abundant substances contributing to the overall flavor in the control group, PTG, and HTHP. Pasteurization preserved the original flavor of the juice, whereas autoclaving triggered the Maillard reaction, forming pyrazine and furan-like compounds that altered the SCJ's flavor. In conclusion, pasteurization retained SCJ's original characteristics, whereas HTHP induces changes in nutrition and imparts a distinct flavor.


Asunto(s)
Saccharum , Gusto , Esterilización , Pasteurización/métodos , Bebidas/análisis , Carbohidratos
18.
J Hum Lact ; 40(2): 259-269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38328919

RESUMEN

BACKGROUND: Raw, never stored or pasteurized mother's own milk (MOM) is not always available to feed preterm infants; however, storage and pasteurization of MOM diminishes some bioactive components. It can be difficult to feed raw MOM to preterm infants due to transportation and storage of small volumes that might be pumped away from the infant, and a concern that they might harbor bacteria. However, the higher availability of bioactive components in raw MOM may provide benefits to preterm infants compared to frozen or pasteurized MOM. RESEARCH AIM: To systematically review and summarize the results of studies on feeding raw MOM versus frozen or pasteurized MOM to preterm infants born at less than 37 weeks of gestation. METHODS: Four databases were searched (Cochrane, Embase, Ovid MEDLINE, and Web of Science) for this systematic review. Of 542 studies identified, nine met inclusion criteria and were critically evaluated using the quality assessment tool for quantitative studies by the Effective Public Health Practice Project. Studies were organized using the Breastfeeding Challenges Facing Preterm Mother-Infant Dyads theoretical framework. RESULTS: Included studies evaluated the outcomes of preterm infants fed raw versus pasteurized MOM (n = 7, 77.8%) or raw versus frozen MOM (n = 2, 22.2%). Researchers found that raw MOM did not increase infant infections and may have improved health and growth outcomes for study participants. CONCLUSION: There is laboratory evidence supporting the safety and efficacy of the use of raw MOM for preterm infants. A raw MOM diet is recommended for preterm infants by professional organizations. Despite this, it may not be universally prioritized and could require purposeful implementation by each institution. Further research is needed to pursue the potential benefits of a raw MOM diet for preterm infants.


Asunto(s)
Recien Nacido Prematuro , Leche Humana , Pasteurización , Humanos , Recien Nacido Prematuro/crecimiento & desarrollo , Recién Nacido , Pasteurización/métodos , Pasteurización/normas , Femenino , Fenómenos Fisiológicos Nutricionales del Lactante , Lactancia Materna/métodos , Dieta/métodos , Dieta/normas
19.
Pediatr Res ; 95(7): 1749-1753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38280953

RESUMEN

BACKGROUND: The microbiological safety of donor milk (DM) is commonly ensured by Holder pasteurization (HoP, 62.5 °C for 30 min) in human milk banks despite its detrimental effects on bioactive factors. We compared the antimicrobial properties of DM after Holder pasteurization treatment or High Hydrostatic Pressure processing (HHP, 350 MPa at 38 °C), a non-thermal substitute for DM sterilization. METHODS: We assessed lactoferrin and lysozyme concentrations in raw, HHP- and HoP-treated pools of DM (n = 8). The impact of both treatments was evaluated on the growth of Escherichia coli and Group B Streptococcus in comparison with control media (n = 4). We also addressed the effect of storage of HHP treated DM over a 6-month period (n = 15). RESULTS: HHP milk demonstrated similar concentrations of lactoferrin compared with raw milk, while it was significantly decreased by HoP. Lysozyme concentrations remained stable regardless of the condition. Although a bacteriostatic effect was observed against Escherichia coli at early timepoints, a sharp bactericidal effect was observed against Group B Streptococcus. Unlike HoP, these results were significant for HHP compared to controls. Stored DM was well and safely preserved by HHP. CONCLUSION: Our study demonstrates that this alternative sterilization method shows promise for use with DM in human milk banks. IMPACT: Antimicrobial activity of donor milk after High Hydrostatic Pressure treatment has not been clearly evaluated. Donor milk lactoferrin is better preserved by High Hydrostatic Pressure than conventional Holder pasteurization, while lysozyme concentration is not affected by either treatment. As with Holder pasteurization, High Hydrostatic Pressure preserves donor milk bacteriostatic activity against E. coli in addition to bactericidal activity against Group B Streptococcus. Donor milk treated by High Hydrostatic Pressure can be stored safely for 6 months.


Asunto(s)
Escherichia coli , Presión Hidrostática , Lactoferrina , Bancos de Leche Humana , Leche Humana , Muramidasa , Pasteurización , Pasteurización/métodos , Leche Humana/química , Humanos , Muramidasa/análisis , Escherichia coli/crecimiento & desarrollo , Lactoferrina/análisis , Esterilización/métodos , Streptococcus agalactiae , Microbiología de Alimentos
20.
Pediatr Res ; 95(3): 641-646, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37833533

RESUMEN

BACKGROUND: Osteopontin (OPN) is an important breastmilk protein involved in infant intestinal, immunological, and brain development. However, little is known about how common milk pasteurization and storage techniques affect this important bioactive protein. METHODS: Human milk osteopontin concentration was measured in single-donor fresh (n = 1) or frozen (n = 20) breastmilk, pooled Holder-pasteurized donor breastmilk (n = 11), and a shelf-stable (retort pasteurized) breastmilk product (n = 2) by ELISA. Single-donor breastmilk samples were subjected to pasteurization and/or freezing before measuring osteopontin concentrations. RESULTS: Holder pasteurization of breastmilk resulted in an ∼50% decrease in osteopontin concentration within single-donor samples. Breastmilk from mothers of preterm infants trended toward higher osteopontin concentration than mothers of term infants; however, samples from preterm mothers experienced greater osteopontin degradation upon pasteurization. A commercial breastmilk product that underwent retort pasteurization had lower osteopontin concentration than a Holder-pasteurized pooled breastmilk product. Finally, freezing breastmilk prior to Holder pasteurization resulted in less osteopontin degradation than Holder pasteurization prior to freezing. CONCLUSIONS: Commonly used breastmilk pasteurization and storage techniques, including freezing and Holder pasteurization, decrease the concentration of the bioactive protein osteopontin in human breastmilk. Holder pasteurization reduced osteopontin concentration by an average of 63%, while freezing resulted in an 8-12% decrease. IMPACT: Pasteurization of human breastmilk significantly decreases the concentration of the bioactive protein osteopontin. Use of both pasteurization and freezing techniques for breastmilk preservation results in greater loss of osteopontin. This study presents for the first time an analysis of osteopontin concentrations in single-donor pasteurized milk samples.


Asunto(s)
Leche Humana , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Osteopontina , Pasteurización/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA