Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
BMC Complement Med Ther ; 24(1): 299, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135016

RESUMEN

BACKGROUND: Peganum harmala L. is used in traditional medicine to treat several health ailments. Hence, the present work aimed to investigate the DPPH free radical scavenging, α-amylase, cytotoxic, and antifibrotic effects of the hydrophilic extract and fixed oil obtained from P. harmala seeds. METHODS: The hydrophilic extract and fixed oil of P. harmala were assessed for their abilities to scavenge DPPH free radicals and inhibit α-amylase using reference bioassays. The cytotoxicity was assessed on several cancer and normal cell lines, including B16F1, Caco-2, COLO205, HeLa, Hep 3B and Hep G2, MCF-7, and HEK-293 T cells. The MTS assay was used to evaluate the antifibrotic capabilities utilizing the human hepatic stellate (LX-2) cell line. RESULTS: P. harmala plant fixed oil has potent DPPH free radical scavenging activity with an IC50 dose of 79.43 ± 0.08 µg/ml. Besides, the hydrophilic extract has a poor anti-α-amylase effect compared with the antidiabetic drug Acarbose, with IC50 doses of 398 ± 0.59 and 25.11 ± 1.22 µg/ml, respectively. In addition, the growth of MCF-7, Hep3B, HepG2, HeLa, COLO205, CaCo2, B16F1, and HeK293t was inhibited by P. harmala hydrophilic extract with IC50 doses of 121.34 ± 1.71, 268.3 ± 0.75, 297.20 ± 1.00, 155.60 ± 1.14, 150.01 ± 0.51, 308.35 ± 0.53, 597.93 ± 1.36, and 5.38 ± 0.99 µg/ml, respectively. In addition, at 1000 µg/ml, 5-Fluorouracil reduced fibrosis cells by 0.089%, while the hydrophilic extract decreased the number of LX-2 cells by 5.81%. CONCLUSION: P. harmala plant-fixed oil exhibits potential antioxidant properties. While the hydrophilic extract showed limited effectiveness as an anti-α-amylase agent and demonstrated notable cytotoxic effects against various tested cancer cell lines. Furthermore, this extract significantly reduces the number of LX-2 fibrotic cells. These findings emphasize the therapeutic potential of these products in managing various health disorders and warrant further investigation into their mechanisms of action and clinical applications.


Asunto(s)
Depuradores de Radicales Libres , Peganum , Extractos Vegetales , alfa-Amilasas , Humanos , Peganum/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores , Depuradores de Radicales Libres/farmacología , Línea Celular Tumoral , Semillas/química
2.
J Photochem Photobiol B ; 258: 112995, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096720

RESUMEN

Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.


Asunto(s)
Artritis Reumatoide , Colorantes Fluorescentes , Harmalina , Ácido Hipocloroso , Animales , Ácido Hipocloroso/metabolismo , Ratones , Colorantes Fluorescentes/química , Artritis Reumatoide/tratamiento farmacológico , Células RAW 264.7 , Harmalina/química , Harmalina/farmacología , FN-kappa B/metabolismo , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Humanos , Peganum/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-38971075

RESUMEN

Peganum harmala L., a traditional medicinal plant in China, is renowned for its significant alkaloid content in seeds and roots exhibiting a wide range of pharmacological activities, including antidepressant, antiseptic, and antiviral. However, the volatile composition of the herb remained unclear. Apart from that, the extraction of volatile compounds through essential oil presents challenges due to the low yield and the degradation of volatile active compounds at high temperatures. This study used multiple sample preparation methods including headspace (HS), needle trap device (NTD), and liquid-liquid extraction (LLE) coupled with gas chromatography-mass spectrometry (GC-MS) to analyze the volatile compounds from the areal part of P. harmala L.. A total of 93 compounds were identified with NTD facilitating the first detection of harmine among the volatile organic compounds. Through network pharmacology and protein interaction analysis, the compounds' potential therapeutic targets of the compounds were explored, and 23 key targets were obtained (AKT1, ALB, PTGS2, MAOA, etc). KEGG pathway enrichment analysis indicated significant involvement in neuroactive ligand-receptor interactions and serotonergic synapses. The results enhanced the understanding of P. harmala's pharmacological mechanisms and supported its ethnopharmacological use.


Asunto(s)
Antidepresivos , Cromatografía de Gases y Espectrometría de Masas , Peganum , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Peganum/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Antidepresivos/análisis , Antidepresivos/química , Antidepresivos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceites Volátiles/química , Aceites Volátiles/análisis , Extracción Líquido-Líquido/métodos , Humanos , Mapas de Interacción de Proteínas
4.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872006

RESUMEN

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Asunto(s)
Apoptosis , Neoplasias del Colon , Glucógeno Sintasa Quinasa 3 beta , Harmina , Peganum , Semillas , Humanos , Peganum/química , Células HCT116 , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Semillas/química , Harmina/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcaloides/farmacología , Harmalina/farmacología , Antineoplásicos Fitogénicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proliferación Celular/efectos de los fármacos
5.
Med Oncol ; 41(6): 144, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717574

RESUMEN

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 µg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.


Asunto(s)
Inhibidores de la Angiogénesis , Movimiento Celular , Peganum , Fenoles , Extractos Vegetales , Humanos , Movimiento Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Peganum/química , Embrión de Pollo , Fenoles/farmacología , Fenoles/análisis , Inhibidores de la Angiogénesis/farmacología , Células MCF-7 , Animales , Proliferación Celular/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos Fitogénicos/farmacología , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/irrigación sanguínea
6.
Chin J Nat Med ; 22(2): 171-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342569

RESUMEN

This study reports the isolation of four new ß-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare ß-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine ß-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 µmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 µmol·L-1.


Asunto(s)
Alcaloides , Peganum , Humanos , Peganum/química , Peganum/metabolismo , Alcaloides/química , Carbolinas/química , Células HL-60
7.
Sci Rep ; 13(1): 19951, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968310

RESUMEN

Harmaline and harmine are naturally occurring closely related ß-carboline alkaloids found in Peganum and Banisteriopsis plants. They have historical significance in traditional practices due to their potential psychoactive and therapeutic properties. Herein, a highly sensitive spectrofluorometric method was developed for the quantifying of harmaline and harmine in diverse matrices, including pure forms, seed samples, and spiked plasma. The procedures lie in addressing the challenge of overlapping fluorescence spectra exhibited by harmaline and harmine through the incorporation of hydroxypropyl-ß-cyclodextrin, altering their chemical properties and fluorescence characteristics. Synchronous fluorescence measurements coupled with first derivative mathematical technique make it possible to distinguish between the harmaline and harmine at 419 and 456 nm, respectively. The method effectiveness is demonstrated through spectral analysis, optimization of the measurement conditions, adopting validation parameters and application to the pure form, seed samples and spiked human plasma. This methodology facilitates accurate determination of these alkaloids over the concentration range of 10─200 ng/mL. Thus, the developed approach provides a robust mean for the precise determination of harmaline and harmine, contributing to analytical chemistry's ongoing efforts to address complex challenges in quantification across diverse matrices.


Asunto(s)
Alcaloides , Peganum , Humanos , Harmina , Harmalina , Alcaloides/análisis , Extractos Vegetales/química , Peganum/química
8.
J Ethnopharmacol ; 300: 115752, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36174807

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis. AIM OF THE STUDY: In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major ß-carboline alkaloids of P. harmala were investigated. MATERIALS AND METHODS: Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output). RESULTS: Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group. CONCLUSION: The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.


Asunto(s)
Alcaloides , Cálculos Renales , Peganum , Urolitiasis , 1-Butanol , Alcaloides/farmacología , Animales , Antioxidantes , Calcio , Oxalato de Calcio/orina , Catalasa , Creatinina , Éteres , Glicol de Etileno/uso terapéutico , Glicol de Etileno/toxicidad , Glutatión , Glutatión Peroxidasa , Glutatión Reductasa , Harmina , Hipnóticos y Sedantes/uso terapéutico , Hipoglucemiantes/uso terapéutico , Cálculos Renales/tratamiento farmacológico , Magnesio , Malondialdehído , Peganum/química , Fosfatos , Extractos Vegetales , Ratas , Factor de Necrosis Tumoral alfa , Urea , Ácido Úrico , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/patología
9.
Org Biomol Chem ; 20(43): 8528-8532, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36278495

RESUMEN

Two pairs of unprecedented ß-carboline-phenylpropanoid heterogeneous alkaloids, (±)-pheharmines A-B (1-4), characterized by a morpholino[4,3,2-hi]ß-carboline core with two chiral centers, were isolated from the roots of Peganum harmala. The structures, including their absolute configurations, were identified using spectroscopic analyses and electronic circular dichroism (ECD) calculations. The biosynthetic hypothesis for the formation of pheharmines A-B was proposed. Compounds 1-4 exhibited moderate cytotoxic activities against HL-60 cell lines.


Asunto(s)
Alcaloides , Peganum , Humanos , Peganum/química , Peganum/metabolismo , Morfolinos/análisis , Morfolinos/metabolismo , Semillas , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Carbolinas/farmacología , Carbolinas/química
10.
Phytochemistry ; 197: 113107, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35121215

RESUMEN

Six alkaloids peharmalines F-K, along with 14 known ones, were isolated from the aerial part of Peganum harmala L.. The structures of the isolated compounds were determined based on their HR-ESI-MS data, extensive NMR spectroscopic analyses, and ECD calculations. 3-(4-Hydroxyphenyl)quinoline exhibited potent antiproliferative activity against the HepG-2 cell lines with an IC50 value of 3.05 µM. Norharmane displayed a moderate inhibition against A549 and HepG-2 cells with IC50 values of 16.45 µM and 17.27 µM, respectively.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Peganum , Células A549 , Alcaloides/química , Antineoplásicos Fitogénicos/química , Células Hep G2 , Humanos , Peganum/química , Extractos Vegetales/química
11.
Arch Microbiol ; 204(2): 133, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-34999965

RESUMEN

Biofilm formation of the opportunistic pathogen Pseudomonas (P). aeruginosa is one of the major global challenges to control nosocomial infections due to their high resistance to antimicrobials and host defense mechanisms. The present study aimed to assess the antibacterial and the antibiofilm activities of Peganum (P). harmala seed extract against multidrug-resistant P. aeruginosa isolates. Chemical identification of the active compound and determination of its molecular mechanism of action were also investigated. Results showed that P. harmala n-butanol "n-BuOH" extract exhibited antibacterial activity against multidrug-resistant P. aeruginosa isolates. This extract was even more active than conventional antibiotics cefazolin and vaamox when tested against three P. aeruginosa multidrug-resistant isolates. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against PAO1 strain at MIC value corresponding to 500 µg/mL and attained 100% killing effect at 24 h of incubation. Furthermore, P. harmala n-BuOH extract showed an antibiofilm activity against P. aeruginosa PAO1 and exhibited 80.43% inhibition at sub-inhibitory concentration. The extract also eradicated 83.99% of the biofilm-forming bacteria. The active compound was identified by gas chromatography-mass spectrometry as an indole alkaloid harmaline. Transcriptomic analysis showed complete inhibition of the biofilm-related gene pilA when PAO1 cells were treated with harmaline. Our results revealed that P. harmala seed extract and its active compound harmaline could be considered as a candidate for a new treatment of multidrug-resistant P. aeruginosa pathogens-associated biofilm infections.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Peganum , Extractos Vegetales , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Peganum/química , Extractos Vegetales/farmacología
12.
Mol Divers ; 26(4): 2257-2267, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34674079

RESUMEN

Peganum genus is rich with its high phytochemical and botanical variability. Peganum species have been used as a sedative, antitumor, analgesic and antidepressant. This paper aims to study the molecular diversity of Peganum genus and to shed more light on the structure-activity relationship of the alkaloids isolated from Peganum genus. All Peganum alkaloids were grouped according to their structural properties. A chemoinformatic approach (SwissTargetPrediction) was used to determine the molecular targets of these alkaloids. To analyze and visualize the results, R software was used to generate hierarchical clustering heatmaps. The results of this study can help researchers to better understand the structure-activity relationship of Peganum alkaloids and how substitution can affect the biological activity of those alkaloids.


Asunto(s)
Alcaloides , Peganum , Alcaloides/química , Alcaloides/farmacología , Quimioinformática , Peganum/química , Extractos Vegetales/química , Relación Estructura-Actividad
13.
Artículo en Inglés | MEDLINE | ID: mdl-33563161

RESUMEN

BACKGROUND & OBJECTIVE: Peganum harmala has been traditionally used to manage rheumatoid arthritis (RA) and other inflammatory conditions. However, its use against RA has not been scientifically evaluated. The current study was designed to assess the anti-arthritic and anti-inflammatory activities of the methanolic extract of P. harmala leaves by in vitro and in vivo methods. METHODS: The in vitro assays were carried out to determine the effect of plant extract on inhibition of egg albumin denaturation and human red blood cell membrane (HRBC) stabilization. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity was performed to determine the antioxidant potential. In vivo anti-arthritic activity was performed by determining the curative effect against Complete Freund's adjuvant (0.1 ml). The plant extract was administered to rats orally at 200, 400 and 600 mg/kg/day for 21 days. RESULTS: The values of IC50 of plant extract in protein denaturation, stabilization of HRBC and DPPH assays were 77.54 mg/ml, 23.90 mg/ml and 58.09 µg/ml, respectively. Moreover, the plant extract significantly attenuated the poly-arthritis and weight loss, anemia and paw edema. The plant extract restored the level of C-reactive protein, rheumatoid factor, alanine transaminase, aspartate transaminase and alkaline phosphatase in poly-arthritic rats. Moreover, the plant extract restored the immune organs' weight in treated rats. Treatment with P. harmala also significantly subdued the oxidative stress by reinstating superoxide dismutase, reduced glutathione, catalase and malondialdehyde in poly-arthritic rats. The plant extract notably restored the prostaglandin-E2 and tumor necrosis factor (TNF)-α in the serum of poly-arthritic rats. CONCLUSION: It was concluded that P. harmala extract had potential antioxidant, anti-inflammatory and antiarthritic activities, which primarily might be attributed to alkaloids, flavonoids and phenols.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Peganum/química , Extractos Vegetales/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Artritis Experimental/patología , Células Cultivadas , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Adyuvante de Freund/farmacología , Adyuvante de Freund/uso terapéutico , Humanos , Medicina Tradicional , Fitoterapia , Plantas Medicinales/química , Ratas
14.
Acta Pharmacol Sin ; 43(1): 50-63, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33785860

RESUMEN

Harmine is a ß-carboline alkaloid isolated from Banisteria caapi and Peganum harmala L with various pharmacological activities, including antioxidant, anti-inflammatory, antitumor, anti-depressant, and anti-leishmanial capabilities. Nevertheless, the pharmacological effect of harmine on cardiomyocytes and heart muscle has not been reported. Here we found a protective effect of harmine on cardiac hypertrophy in spontaneously hypertensive rats in vivo. Further, harmine could inhibit the phenotypes of norepinephrine-induced hypertrophy in human embryonic stem cell-derived cardiomyocytes in vitro. It reduced the enlarged cell surface area, reversed the increased calcium handling and contractility, and downregulated expression of hypertrophy-related genes in norepinephrine-induced hypertrophy of human cardiomyocytes derived from embryonic stem cells. We further showed that one of the potential underlying mechanism by which harmine alleviates cardiac hypertrophy relied on inhibition of NF-κB phosphorylation and the stimulated inflammatory cytokines in pathological ventricular remodeling. Our data suggest that harmine is a promising therapeutic agent for cardiac hypertrophy independent of blood pressure modulation and could be a promising addition of current medications for cardiac hypertrophy.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Harmina/farmacología , Sustancias Protectoras/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Administración Oral , Animales , Banisteriopsis/química , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Relación Dosis-Respuesta a Droga , Harmina/administración & dosificación , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Norepinefrina/antagonistas & inhibidores , Peganum/química , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Wistar , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Relación Estructura-Actividad
15.
Molecules ; 26(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834119

RESUMEN

Extract of natural plants is one of the most important metallic corrosion inhibitors. They are readily available, nontoxic, environmentally friendly, biodegradable, highly efficient, and renewable. The present project focuses on the corrosion inhibition effects of Peganum Harmala leaf extract. The equivalent circuit with two time constants with film and charge transfer components gave the best fitting of impedance data. Extraction of active species by sonication proved to be an effective new method to extract the inhibitors. High percent inhibition efficacy IE% of 98% for 283.4 ppm solutions was attained using impedance spectroscopy EIS measurements. The values of charge transfer Rct increases while the double layer capacitance Cdl values decrease with increasing Harmal extract concentration. This indicates the formation of protective film. The polarization curves show that the Harmal extract acts as a cathodic-type inhibitor. It is found that the adsorption of Harmal molecules onto the steel surface followed Langmuir isotherm. Fourier-transform infrared spectroscopy FTIR was used to determine the electron-rich functional groups in Harmal extract, which contribute to corrosion inhibition effect. Scanning electron microscopy SEM measurement of a steel surface clearly proves the anticorrosion effect of Harmal leaves.


Asunto(s)
Peganum/química , Extractos Vegetales/química , Acero/química , Corrosión , Espectroscopía Dieléctrica , Espectroscopía Infrarroja por Transformada de Fourier
16.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641627

RESUMEN

Peganum harmala (P. harmala) belongs to the family Zygophyllaceae, and is utilized in the traditional medicinal systems of Pakistan, China, Morocco, Algeria, and Spain to treat several chronic health disorders. The aim of the present study was to identify the chemical constituents and to evaluate the antioxidant, anti-inflammatory, and toxicity effects of P. harmala extracts both in vitro and in vivo. Sequential crude extracts including 100% dichloromethane, 100% methanol, and 70% aqueous methanol were obtained and their antioxidant and anti-inflammatory effects evaluated both in vitro and in vivo. The anti-inflammatory effect of the extract was investigated using the carrageenan-induced paw edema method in mice, whereas the toxicity of the most active extract was evaluated using an acute and subacute toxicity rat model. In addition, we have used the bioassay-guided approach to obtain potent fractions, using solvent-solvent partitioning and reversed phase high performance liquid chromatography from active crude extracts; identification and quantification of compounds from the active fractions was achieved using electrospray ionization mass spectrometry and high performance liquid chromatography techniques. Results revealed that the 100% methanol extract of P. harmala exhibits significant in vitro antioxidant activity in DPPH assay with an IC50 of 49 µg/mL as compared to the standard quercetin with an IC50 of 25.4 µg/mL. The same extract exhibited 63.0% inhibition against serum albumin denaturation as compared to 97% inhibition by the standard diclofenac sodium in an in vitro anti-inflammatory assay, and in vivo anti-inflammatory against carrageenan-induced paw edema (75.14% inhibition) as compared to 86.1% inhibition caused by the standard indomethacin. Furthermore, this extract was not toxic during a 14 day trial of acute toxicity when given at a dose of 3 g/kg, indicating that the lethal dose (LD50) of P. harmala methanol extract was greater than 3 g/kg. P. harmala methanolic fraction 2 obtained using bioassay-guided fractionation showed the presence of quinic acid, peganine, harmol, harmaline, and harmine, confirmed by electrospray ionization mass spectrometry and quantified using external standards on high performance liquid chromatography. Taken all together, the current investigation further confirms the antioxidant, anti-inflammatory, and safety aspects of P. harmala, which justifies its use in folk medicine.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Carragenina/efectos adversos , Edema/tratamiento farmacológico , Peganum/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Edema/inducido químicamente , Indometacina/farmacología , Dosificación Letal Mediana , Ratones , Extractos Vegetales/química , Quercetina/farmacología , Ratas , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
17.
Bratisl Lek Listy ; 122(9): 670-679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34463115

RESUMEN

BACKGROUND: Predominant molecules in Peganum harmala leaves were detected using gas chromatography-mass spectrometry (GC-MS). Based on the results of this analysis, most alkaloids, flavonoids and triterpenoids in found P. harmala was compiled from the literature in order to develop and lead the production of effective inhibitor drugs for ACE2, main protease, and RNA dependent RNA polymerase (RdRp) proteins of SARS-CoV-2 virus, which is today's most contagious and deadly disease. AIM: By comparing FDA-approved drugs used in the treatment of COVID-19, we aimed to determine whether the molecules in P. harmala are effective against SARS CoV-2 in silico. RESULTS AND CONCLUSION: P. harmala molecules were selected as drug candidates from the PubChem web tool. Afterwards, molecular docking calculations of these inhibitor molecules were made with Maestro Molecular modeling program by Schrödinger. The comparison of molecules with high inhibitory activities with FDA-approved drugs was made. With molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations, docking calculations of molecules that have high inhibitory activity, were tried to be verified by calculations in the range of 0-100 nanoseconds (Tab. 4, Fig. 6, Ref. 53).


Asunto(s)
Alcaloides , Peganum , SARS-CoV-2/efectos de los fármacos , Alcaloides/farmacología , COVID-19 , Humanos , Simulación del Acoplamiento Molecular , Peganum/química , Fitoquímicos/farmacología , Hojas de la Planta/química
18.
Oxid Med Cell Longev ; 2021: 5900422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257813

RESUMEN

The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.


Asunto(s)
Alimentos Funcionales/normas , Peganum/química , Humanos
19.
Sci Rep ; 11(1): 12040, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103557

RESUMEN

Peganum harmala (P. harmala) is a folk medicinal herb used in the Sinai Peninsula (Egypt) as a remedy for central disorders. The main constituents, harmine and harmaline, have displayed therapeutic efficacy against Alzheimer's disease (AD); however, the P. harmala potential on sensitizing central insulin to combat AD remains to be clarified. An AD-like rat model was induced by aluminum chloride (AlCl3; 50 mg/kg/day for six consecutive weeks; i.p), whereas a methanolic standardized P. harmala seed extract (187.5 mg/kg; p.o) was given to AD rats starting 2 weeks post AlCl3 exposure. Two additional groups of rats were administered either the vehicle to serve as the normal control or the vehicle + P. harmala seed extract to serve as the P. harmala control group. P. harmala enhanced cognition appraised by Y-maze and Morris water maze tests and improved histopathological structures altered by AlCl3. Additionally, it heightened the hippocampal contents of glucagon-like peptide (GLP)-1 and insulin, but abated insulin receptor substrate-1 phosphorylation at serine 307 (pS307-IRS-1). Besides, P. harmala increased phosphorylated Akt at serine 473 (pS473-Akt) and glucose transporter type (GLUT)4. The extract also curtailed the hippocampal content of beta amyloid (Aß)42, glycogen synthase (GSK)-3ß and phosphorylated tau. It also enhanced Nrf2, while reduced lipid peroxides and replenished glutathione. In conclusion, combating insulin resistance by P. harmala is a novel machinery in attenuating the insidious progression of AD by enhancing both insulin and GLP-1 trajectories in the hippocampus favoring GLUT4 production.


Asunto(s)
Cloruro de Aluminio/química , Enfermedad de Alzheimer/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Peganum/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Cognición , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Harmalina/uso terapéutico , Hipocampo/metabolismo , Resistencia a la Insulina , Masculino , Aprendizaje por Laberinto , Neurociencias , Peganum/química , Fosforilación , Plantas Medicinales/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
20.
J Microencapsul ; 38(5): 324-337, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33951988

RESUMEN

Synthesis and investigation of biological activity of Peganum harmala smoke-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Peganum harmala smoke-loaded PLGA nanoparticles (PHSE-PNP) were produced by double emulsion solvent evaporation method and characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS), and ζ-potential. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) for toxicity evaluation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assay for antioxidant power, chorioallantoic membrane (CAM), qPCR, and scratch assay for angiogenesis and mouse cancer model for antitumor effects of PHSE-PNP's were used. PHSE-PNP with a size of 216.33 nm, polydispersity index (PDI): 0.22 and ζ-potential: -25.41 mV inhibited A2780, PC3, A549, HepG2, Mda-mb-231, HT-29 as cancer cells and HUVEC as an normal cells with half-maximal inhibitory concentration (IC50) at about 208.62, 479.05, 1092.6, 1103.9, 1299.21, 3467.5, and <4000 µg/ml, respectively. Also PHSE-PNP inhibited ABTS (IC50: 0.720 mg/ml), DPPH (IC50: 1.36 mg/ml) free radicals and decreased the size of murine tumours (88.3% in 11 days) and suppressed angiogenesis in the CAM and scratch assays. PHSE-PNP can be considered as a potential chemopreventive agent in cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Peganum/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Células A549 , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Portadores de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Emulsiones , Femenino , Células HT29 , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Picratos/química , Humo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA