Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208385

RESUMEN

African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans, the ongoing ASFV epidemic could have severe economic consequences for global food security. Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently, there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking and machine learning models to identify novel antiviral agents. We confirmed that compounds with high affinity present in the region of interest belonged to subsets in the chemical space using principal component analysis and k-means clustering in molecular docking studies of FDA-approved drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the present study suggest that molecular docking and machine learning models can play an important role in identifying potential antiviral drugs against ASFVs.


Asunto(s)
Virus de la Fiebre Porcina Africana/efectos de los fármacos , Fiebre Porcina Africana/tratamiento farmacológico , Antivirales/química , Antivirales/farmacología , Aprendizaje Automático/normas , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Secuencia de Aminoácidos , Animales , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Pentagastrina/química , Pentagastrina/farmacología , Porcinos , Proteínas Virales/química , Proteínas Virales/metabolismo
2.
J Mol Graph Model ; 101: 107730, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920239

RESUMEN

The SARS-CoV-2 main protease (Mpro) is an attractive target towards discovery of drugs to treat COVID-19 because of its key role in virus replication. The atomic structure of Mpro in complex with an α-ketoamide inhibitor (Lig13b) is available (PDB ID:6Y2G). Using 6Y2G and the prior knowledge that protease inhibitors could eradicate COVID-19, we designed a computational study aimed at identifying FDA-approved drugs that could interact with Mpro. We searched the DrugBank and PubChem for analogs and built a virtual library containing ∼33,000 conformers. Using high-throughput virtual screening and ligand docking, we identified Isavuconazonium, a ketoamide inhibitor (α-KI) and Pentagastrin as the top three molecules (Lig13b as the benchmark) based on docking energy. The ΔGbind of Lig13b, Isavuconazonium, α-KI, Pentagastrin was -28.1, -45.7, -44.7, -34.8 kcal/mol, respectively. Molecular dynamics simulation revealed that these ligands are stable within the Mpro active site. Binding of these ligands is driven by a variety of non-bonded interaction, including polar bonds, H-bonds, van der Waals and salt bridges. The overall conformational dynamics of the complexed-Mpro was slightly altered relative to apo-Mpro. This study demonstrates that three distinct classes molecules, Isavuconazonium (triazole), α-KI (ketoamide) and Pentagastrin (peptide) could serve as potential drugs to treat patients with COVID-19.


Asunto(s)
Cisteína Endopeptidasas/química , Nitrilos/farmacología , Pentagastrina/farmacología , Inhibidores de Proteasas/farmacología , Piridinas/farmacología , Triazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Antivirales/química , Antivirales/farmacología , Dominio Catalítico , Simulación por Computador , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Bases de Datos Farmacéuticas , Aprobación de Drogas , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nitrilos/química , Pentagastrina/química , Inhibidores de Proteasas/química , Piridinas/química , Triazoles/química , Estados Unidos , United States Food and Drug Administration , Proteínas no Estructurales Virales/metabolismo
3.
Chemistry ; 14(9): 2811-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18214880

RESUMEN

The synthesis of the novel pentagastrin seco-CBI conjugate 3, which is based on the highly cytotoxic antitumor antibiotic (+)-duocarmycin SA (1), is reported. A key step in the synthesis is the palladium-catalyzed carbonylation of aryl bromide 7 to give the benzyl ester 16, which is transformed into the new seco-CBI derivative 21 bearing a carboxylic acid ester moiety. Subsequent transformation of 21 into an activated ester followed by the introduction of beta-alanine and tetragastrin led to the new pentagastrin drug 3 that contains a peptide moiety for targeting cancer cells expressing CCK-B/gastrin receptors.


Asunto(s)
Antineoplásicos/síntesis química , Indoles/química , Indoles/síntesis química , Pentagastrina/análogos & derivados , Pentagastrina/química , Antineoplásicos/química , Catálisis , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Duocarmicinas , Ésteres/química , Estructura Molecular , Paladio/química , Pentagastrina/síntesis química , Pirroles/química , Receptor de Colecistoquinina B/biosíntesis , Receptor de Colecistoquinina B/efectos de los fármacos
4.
Amino Acids ; 27(1): 101-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15309578

RESUMEN

This paper describes the enzymatic synthesis of the C-terminal fragment H-Gly-Trp-Met-Asp-Phe-NH2 of cholecystokinin. Immobilized enzymes were used for the formation of all peptide bonds except thermolysin. Beginning the synthesis with phenylacetyl (PhAc) glycine carboxamidomethyl ester (OCam) and H-Trp-OMe by using immobilized papain as biocatalyst in buffered ethyl acetate, the dipeptide methyl ester was then coupled directly with Met-OEt.HCl by alpha-chymotrypsin/Celite 545 in a solvent free system. For the 3+2 coupling PhAc-Gly-Trp-Met-OEt had to be converted into its OCam ester. The other fragment H-Asp(OMe)-Phe-NH2 resulted from the coupling of Cbo-Asp(OMe)-OH with H-Phe-NH2.HCl and thermolysin as catalyst, followed by catalytic hydrogenation. Finally PhAc-Gly-Trp-Met-Asp-Phe-NH2 was obtained in a smooth reaction from PhAc-Gly-Trp-Met-OCam and H-Asp(OMe)-Phe-NH2 with alpha-chymotrypsin/Celite 545 in acetonitrile, followed by basic hydrolysis of the beta-methyl ester. The PhAc-group is removed with penicillin G amidase and CCK-5 is obtained in an overall isolated yield of 19.6%.


Asunto(s)
Enzimas Inmovilizadas/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/síntesis química , Sincalida/química , Sincalida/síntesis química , Acetatos/química , Bacillus/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Ésteres/química , Glicina/química , Hidrólisis , Papaína/química , Penicilina Amidasa/química , Penicilina G/química , Pentagastrina/química , Péptidos/química , Solventes/química , Termolisina/química
5.
J Pept Sci ; 1(3): 191-200, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-9222996

RESUMEN

Cleavage and kinetic studies have been carried out using commercially obtained H-Tyr(tBu)-5-(4'-aminomethyl-3',5'-dimethoxyphenoxy)valeric acid-TentaGelS (H-Tyr(tBu)-4-ADPV-TentaGelS) and H-Tyr (tBu)-4-ADPV-Ala-aminomethyl-resin (H-Tyr(tBu)-4-ADPV-AM-resin) prepared from commercially available resin and loaded with commercially available Fmoc-4-ADPV-OH amide anchor. Cleavage with pure trifluoroacetic acid (TFA) gave the intermediate H-Tyr-4-ADPV-NH2, which was then degraded to H-Tyr-NH2, and cleavage with TFA/dichloromethane (1:9) yielded H-Tyr-4-ADPV-NH2 which could be isolated in preparative amounts. Cleavage reactions with 15N-labelled H-Ala-4-ADPV-(15N)-Gly-AM-resin yielded the intermediate H-Ala-4-ADPV-NH2, which contained no 15N as demonstrated by 1H-NMR. The analysis of the commercial Fmoc-4-ADPV-OH amide anchor showed the presence of Fmoc-4-ADPV-4-ADPV-OH as an impurity in high amounts. This dimeric anchor molecule is the cause of formation of the anchor-linked peptide intermediate obtained during the cleavage from the resin. The particularly high acid-lability of the amide bond between the two ADPV moieties was utilized to synthesize sidechain and C-terminally 4-ADPV protected pentagastrin on a double-anchor resin, and to cleave it using 5% trifluoroacetic acid in dichloromethane. This method may offer a new way for the synthesis of protected peptide amides with improved solubility to be used in fragment condensation.


Asunto(s)
Péptidos/química , Péptidos/síntesis química , Amidas/síntesis química , Amidas/química , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Fluorenos , Indicadores y Reactivos , Cinética , Métodos , Estructura Molecular , Pentagastrina/síntesis química , Pentagastrina/química , Resinas Sintéticas , Solubilidad , Valeratos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...