Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.538
1.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article En | MEDLINE | ID: mdl-38736655

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
2.
J Breath Res ; 18(3)2024 May 07.
Article En | MEDLINE | ID: mdl-38663377

In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.


Breath Tests , Butadienes , Hemiterpenes , Pentanes , Humans , Hemiterpenes/analysis , Butadienes/analysis , Pentanes/analysis , Breath Tests/methods , Exhalation , Mevalonic Acid/metabolism , Cholesterol/metabolism , Cholesterol/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673766

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Erythritol , Erythritol/analogs & derivatives , Populus , Sugar Phosphates , Transferases , Populus/genetics , Populus/metabolism , Populus/enzymology , Erythritol/metabolism , Sugar Phosphates/metabolism , Transferases/metabolism , Transferases/genetics , Hemiterpenes/metabolism , Butadienes/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Pentanes/metabolism , Plants, Genetically Modified
4.
Mol Pharm ; 21(5): 2383-2393, 2024 May 06.
Article En | MEDLINE | ID: mdl-38551360

Nanocone clusters (NCCs) have been developed as clusters with inclusion complexes of FDA-approved ß-cyclodextrin (ßCD) and perfluorocarbons (PFC) (i.e., perfluoropentane (PFP) and perfluorohexane (PFH)) and have shown promise in nanoparticle-mediated histotripsy (NMH) applications owing to their lowered cavitation threshold, ease of production, and fluorocarbon quantification. However, there is still a lack of information on the best conditions of the synthesis of NCCs as a product that can have a maximum determinable fluorocarbon content and maintain the stability of the NCC during synthesis and when used as histotripsy agents or exposed to physiological conditions. These concerns about the stability of the clusters and the best possible formulation are investigated in the current work. The cluster formation potential was tested taking into consideration the nature of both PFCs and ßCD by employing different synthesis conditions in terms of solution and environmental parameters such as concentration of solvent, stoichiometry between ßCD and PFCs, temperature, pH, solvent type, etc. The best route of synthesis was then translated into various batch sizes and investigated in terms of the PFC loading and yield. These studies revealed that preparing NCCs in double-distilled water in an ice bath at the optimized solution concentration gave the highest yields and optimal PFC loading, as determined from gas chromatography. Furthermore, the stability of the clusters with different stoichiometries was scrutinized in varying concentrations, mechanical disruption times, pH levels, and temperature conditions, showing effects on each cluster's particle size in dynamic light scattering, visualized in transmission electron microscopy, and cavitation behavior in agarose gel tissue phantoms. These studies revealed stable clusters for all formulations, with PFH-containing NCCs emerging to be the most stable in terms of their cluster size and bubble formation potential in histotripsy. Finally, the shelf life of these clusters was investigated using DLS, which revealed a stable cluster. In conclusion, NCCs have shown high stability in terms of both synthesis, which can be replicated in gram-level production, and the cluster itself, which can be exposed to harsher conditions and still form stable bubbles in histotripsy.


Fluorocarbons , Nanoparticles , beta-Cyclodextrins , Fluorocarbons/chemistry , beta-Cyclodextrins/chemistry , Nanoparticles/chemistry , Solvents/chemistry , Temperature , Hydrogen-Ion Concentration , Pentanes
5.
Bioorg Med Chem ; 102: 117652, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38442523

Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.


Benzene , Pentanes , Benzene/chemistry , Molecular Dynamics Simulation , Solubility
8.
Plant Cell Environ ; 47(4): 1099-1117, 2024 Apr.
Article En | MEDLINE | ID: mdl-38038355

Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.


Photosynthesis , Proteomics , Hemiterpenes/metabolism , Butadienes/metabolism , Trees/metabolism , Pentanes/metabolism , Plant Leaves/metabolism
9.
J Biomed Mater Res A ; 112(4): 600-612, 2024 04.
Article En | MEDLINE | ID: mdl-37855181

Carbon monoxide is a gasotransmitter that may be beneficial for vascular tissue engineering and regenerative medicine strategies because it can promote endothelial cell (EC) proliferation and migration by binding to heme-containing compounds within cells. For example, CO may be beneficial for vascular cognitive impairment and dementia because many patients' disrupted blood-brain barriers do not heal naturally. However, control of the CO dose is critical, and new controlled delivery methods need to be developed. This study developed ultrasound-sensitive microbubbles with a carefully controlled precipitation technique, loaded them with CO, and assessed their ability to promote EC proliferation and function. Microbubbles fabricated with perfluoropentane exhibited good stability at room temperature, but they could still be ruptured and release CO in culture with application of ultrasound. Microbubbles synthesized from the higher boiling point compound, perfluorohexane, were too stable at physiological temperature. The lower-boiling point perfluoropentane microbubbles had good biocompatibility and appeared to improve VE-cadherin expression when CO was loaded in the bubbles. Finally, tissue phantoms were used to show that an imaging ultrasound probe can efficiently rupture the microbubbles and that the CO-loaded microbubbles can improve EC spreading and proliferation compared to control conditions without microbubbles as well as microbubbles without application of ultrasound. Overall, this study demonstrated the potential for use of these ultrasound-sensitive microbubbles for improving blood vessel endothelialization.


Carbon Monoxide , Fluorocarbons , Microbubbles , Humans , Endothelial Cells , Cell Proliferation , Pentanes
10.
Proc Natl Acad Sci U S A ; 120(41): e2309536120, 2023 10 10.
Article En | MEDLINE | ID: mdl-37782800

Isoprene is emitted by some plants and is the most abundant biogenic hydrocarbon entering the atmosphere. Multiple studies have elucidated protective roles of isoprene against several environmental stresses, including high temperature, excessive ozone, and herbivory attack. However, isoprene emission adversely affects atmospheric chemistry by contributing to ozone production and aerosol formation. Thus, understanding the regulation of isoprene emission in response to varying environmental conditions, for example, elevated CO2, is critical to comprehend how plants will respond to climate change. Isoprene emission decreases with increasing CO2 concentration; however, the underlying mechanism of this response is currently unknown. We demonstrated that high-CO2-mediated suppression of isoprene emission is independent of photosynthesis and light intensity, but it is reduced with increasing temperature. Furthermore, we measured methylerythritol 4-phosphate (MEP) pathway metabolites in poplar leaves harvested at ambient and high CO2 to identify why isoprene emission is reduced under high CO2. We found that hydroxymethylbutenyl diphosphate (HMBDP) was increased and dimethylallyl diphosphate (DMADP) decreased at high CO2. This implies that high CO2 impeded the conversion of HMBDP to DMADP, possibly through the inhibition of HMBDP reductase activity, resulting in reduced isoprene emission. We further demonstrated that although this phenomenon appears similar to abscisic acid (ABA)-dependent stomatal regulation, it is unrelated as ABA treatment did not alter the effect of elevated CO2 on the suppression of isoprene emission. Thus, this study provides a comprehensive understanding of the regulation of the MEP pathway and isoprene emission in the face of increasing CO2.


Ozone , Populus , Carbon Dioxide/metabolism , Diphosphates/metabolism , Photosynthesis , Hemiterpenes , Butadienes/pharmacology , Butadienes/metabolism , Plants/metabolism , Ozone/metabolism , Pentanes/metabolism , Plant Leaves/metabolism , Populus/genetics , Populus/metabolism
11.
Environ Pollut ; 338: 122721, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37838319

Currently, severe environmental issues have led to a great transition in the automotive industry from internal combustion engine vehicles to electric vehicles, but this transition will take time more than 10 years, which still requires the use of internal combustion engine vehicles. However, these vehicles emit a significant amount of hydrocarbons, in addition to nitrogen oxides (NOx), due to incomplete fuel combustion. They contribute to the formation of photochemical smog when they react with NOx in the presence of sunlight. To effectively remove these hydrocarbons from the exhaust gas of turbo-gasoline engines or diesel engines, we investigated the abatement of propane and iso-pentane, two typical hydrocarbons. In particular, we studied commercial Pd catalysts and revealed how the Pd loading and aging process simulating 4k and 100k mileage affected hydrocarbon abatement abilities, and their phases were identified using characterization technique, including CO chemisorption, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). We also suggested the reaction pathway for the complete oxidation of propane over Pd catalyst based on the reaction orders of propane and oxygen: Propane adsorbs on O atoms of PdO, and the kinetically relevant C-H bond cleavage step occurs by the interaction with abundant neighboring O atoms of PdO. Finally, the propane and iso-pentane abatement ability of the Pd catalyst aged for 100k mileage were evaluated under realistic exhaust gas conditions, and the effect of each gas component in the realistic exhaust gas was identified; water inhibits the catalytic reaction of hydrocarbons by occupying the active sites, whereas NO catalyzes the hydrocarbon oxidation reaction by either changing the reaction pathway or active sites under fuel-lean conditions. These findings enable us to effectively reduce environmental pollution and facilitate a smoother transition from internal combustion engine vehicles to electric vehicles.


Pentanes , Smog , Propane , Hydrocarbons/analysis , Vehicle Emissions/analysis , Gasoline/analysis
12.
Biomed Pharmacother ; 168: 115745, 2023 Dec.
Article En | MEDLINE | ID: mdl-37871561

Amyloid ß 1-42 (Aß1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aß1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aß1-42 aggregation and conformational transition towards ß-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aß1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aß1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aß1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aß1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aß1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aß-targeting therapeutic strategies for AD treatment.


Alzheimer Disease , Amyloid beta-Peptides , Pentanes , Humans , Alzheimer Disease/metabolism , Pentanes/pharmacology , Peptide Fragments/toxicity , Protein Aggregates
13.
Plant Biol (Stuttg) ; 25(6): 981-993, 2023 Oct.
Article En | MEDLINE | ID: mdl-37565537

In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.


Ficus , Plant Growth Regulators , Plant Growth Regulators/metabolism , Seasons , Ficus/genetics , Ficus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Hemiterpenes/metabolism , Butadienes/metabolism , Cytokinins/metabolism , Hormones/metabolism , Plant Leaves/metabolism , Pentanes/metabolism
14.
Tree Physiol ; 43(10): 1855-1869, 2023 10 08.
Article En | MEDLINE | ID: mdl-37418159

Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.


Betula , Populus , Humans , Betula/genetics , Betula/metabolism , Reproducibility of Results , Metabolomics , Hemiterpenes/metabolism , Butadienes/metabolism , Plant Leaves/physiology , Trees/metabolism , Populus/metabolism , Pentanes/metabolism
15.
Molecules ; 28(13)2023 Jun 22.
Article En | MEDLINE | ID: mdl-37446590

The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, ß-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.


Cannabidiol , Cannabis , Cannabis/chemistry , Antioxidants/pharmacology , Pentanes , Lithuania , Phytochemicals , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
Article En | MEDLINE | ID: mdl-37270794

Nucleoside analogues are prevalent in drug design and call for more diversified structures. Bicyclo[1.1.1]pentane (BCP) structure has recently found wide applications in drug discovery. However, incorporation of BCP fragment into nucleoside analogues is hitherto unknown. Thus, from readily available BCP-containing building blocks, six new compounds, including pyrimidine nucleoside analogues, purine nucleoside analogues, and C-nucleoside analogues were prepared in 1-4 steps, generally with good yields.


Nucleosides , Pentanes , Nucleosides/chemistry
17.
Org Lett ; 25(22): 4050-4055, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37235701

Herein, we report a visible-light-induced three-component reaction involving [1.1.1]propellane, diazoates, and various heterocycles for the synthesis of 3-heteroarylbicyclo[1.1.1]pentane-1-acetates. Throughout this reaction, the radicals generated from diazoate species react with [1.1.1]propellane in an addition reaction to form bicyclo[1.1.1]pentane (BCP) radicals that subsequently react with heterocycles, leading to the formation of 1,3-disubstituted BCP acetates. Notably, this methodology exhibits excellent functional group compatibility, high atom economy, and mild reaction conditions, thus facilitating suitable synthetic access to 1,3-disubstituted BCP acetates.


Acetates , Pentanes , Light
18.
Angew Chem Int Ed Engl ; 62(23): e202301209, 2023 06 05.
Article En | MEDLINE | ID: mdl-37017133

With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.


Pentanes , Proteins , Models, Molecular , Protein Conformation, alpha-Helical , Proteins/chemistry
19.
J Breath Res ; 17(3)2023 04 19.
Article En | MEDLINE | ID: mdl-37001512

We summarize the history and review the literature on isoprene in exhaled breath and discuss the current evidence and models that describe its endogenous origin and consequence for understanding isoprene levels and their variations in exhaled breath.


Breath Tests , Butadienes , Humans , Hemiterpenes , Exhalation , Pentanes
20.
Angew Chem Int Ed Engl ; 62(26): e202302771, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-36988343

We report a two-step approach to obtain synthetically versatile bicyclo[1.1.1]pentane (BCP) derivatives using Grignard reagents. This method allows the incorporation of BCP units in tetrapyrrolic macrocycles and the synthesis of a new class of calix[4]pyrrole analogues by replacing two bridging methylene groups with two BCP units. In addition, a doubly N-confused system was also formed in the presence of electron-withdrawing substituents at the BCP bridgeheads. The pyrrole rings in BCP containing macrocycles exist in 1,3-alternate or αßαß conformations, as observed from single-crystal X-ray diffraction analyses and 2D NMR spectroscopy.


Pentanes , Pyrroles , Pyrroles/chemistry , Molecular Conformation , Crystallography, X-Ray
...