Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 318-324, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38733186

RESUMEN

Objective: To explore the antiviral activity of the small-molecule compound AM679 in hepatitis B virus (HBV) replication and infection cell models. Methods: The positive regulatory effect of AM679 on EFTUD2 expression was validated by qPCR and Western blotting. HepAD38 and HepG2-NTCP cells were treated with AM679 (0.5, 1, and 2 nmol/L). Negative control, positive control, and AM679 combined with the entecavir group were set up. HBV DNA intra-and extracellularly, as well as the expression levels of intracellular HBV total RNAs and 3.5kb-RNA changes, were detected with qPCR. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) levels were measured in the cell supernatant by an enzyme-linked immunosorbent assay (ELISA). The t-test method was used for the statistical analysis of the mean difference between groups. Results: EFTUD2 mRNA and protein expression levels were significantly increased in HepAD38 and HepG2-NTCP cells following AM679 treatment, with a statistically significant difference (P < 0.001). Intra-and extracellular indicators such as HBV DNA, HBV RNAs, HBV 3.5kb-RNA, HBsAg, and HBeAg were decreased to varying degrees in both cell models, and the decrease in these indicators was more pronounced with the increase in AM679 concentration and prolonged treatment duration, while the combined use of AM679 and entecavir had a more significant antiviral effect. The HBV DNA inhibition rates in the supernatant of HepAD38 cells with the use of 2 nmol/L AM679 were 21% and 48% on days three and nine, respectively. The AM679 combined with the ETV treatment group had the most significant inhibitory effect (62%), with a P < 0.01. More active HBV replication was observed after silencing EFTUD2, while the antiviral activity of AM679 was significantly weakened. Conclusion: AM679 exerts anti-HBV activity in vitro by targeting the regulation of EFTUD2 expression.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Replicación Viral , Humanos , Antivirales/farmacología , ADN Viral , Guanina/análogos & derivados , Células Hep G2 , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Indoles/química , Indoles/farmacología , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacología , Factores de Elongación de Péptidos/antagonistas & inhibidores , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
3.
Int J Biol Macromol ; 266(Pt 2): 131332, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574905

RESUMEN

Polyhydroxyalkanoates (PHAs) are promising alternatives to existing petrochemical-based plastics because of their bio-degradable properties. However, the limited structural diversity of PHAs has hindered their application. In this study, high mole-fractions of Poly (39 mol% 3HB-co-17 mol% 3 HV-co-44 mol% 4 HV) and Poly (25 mol% 3HB-co-75 mol% 5 HV) were produced from 4- hydroxyvaleric acid and 5-hydroxyvaleric acid, using Cupriavidus necator PHB-4 harboring the gene phaCBP-M-CPF4 with modified sequences. In addition, the complex toxicity of precursor mixtures was tested, and it was confirmed that the engineered C. necator was capable of synthesizing Poly (32 mol% 3HB-co-11 mol% 3 HV-co-25 mol% 4 HV-co-32 mol% 5 HV) at low mixture concentrations. Correlation analyses of the precursor ratio and the monomeric mole fractions indicated that each mole fractions could be precisely controlled using the precursor proportion. Physical property analysis confirmed that Poly (3HB-co-3 HV-co-4 HV) is a rubber-like amorphous polymer and Poly (3HB-co-5 HV) has a high tensile strength and elongation at break. Poly (3HB-co-3 HV-co-4 HV-co-5 HV) had a much lower glass transition temperature than the co-, terpolymers containing 3 HV, 4 HV and 5 HV. This study expands the range of possible physical properties of PHAs and contributes to the realization of custom PHA production by suggesting a method for producing PHAs with various physical properties through mole-fraction control of 3 HV, 4 HV and 5 HV.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/química , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/biosíntesis , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/química , Poliésteres/química , Poliésteres/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768593

RESUMEN

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-ß-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.


Asunto(s)
Ficus , Animales , Masculino , Ratones , Ácido Acético/uso terapéutico , Analgésicos/uso terapéutico , Ficus/química , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Extractos Vegetales/química , Ácidos Pentanoicos/química
8.
Int J Biol Macromol ; 220: 1163-1176, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030981

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of promising bio-based thermoplastic for food packaging but find restricted industrial applications due to its brittleness and poor processability that is caused by its large spherulite sizes. In this study, for the purpose of toughening PHBV, bio-based engineering polyester elastomers (BEPE) were synthesized and blended with PHBV to prepare fully bio-based blends. In order to improve the compatibility and toughness of the BEPE/PHBV blends, epoxy-terminated hyperbranched polyesters (EHBP) were synthesized, which could be homogeneously dispersed into the PHBV/BEPE blends and improve the compatibility between the two phases of the matrix. The results showed that compared to those of the PHBV/BEPE blends, the elongation at break, impact strength and tensile toughness of the PHBV/BEPE blends with 3.0phr EHBP were enhanced by 134.2 %, 76.8 %, and 123.5 %, respectively. The crystallization study demonstrated the crystallization rate of PHBV/BEPE blends decreased due to the addition of EHBP. The reasons lied in that the addition of EHBP leads to chemical cross-linking between PHBV and BEPE. Meanwhile, the formation of hydrogen bonding, co-crystallization and chain entanglement increased the adhesion between PHBV and BEΡE, which generated the superior toughness of the blends.


Asunto(s)
Elastómeros , Poliésteres , Resinas Epoxi , Hidroxibutiratos , Ácidos Pentanoicos/química , Poliésteres/química
9.
Future Med Chem ; 14(1): 17-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818903

RESUMEN

Aim: Our previous results suggest that phenyl/naphthylacetyl pentanoic acid derivatives may exhibit dual MMP-2 and HDAC8 inhibitory activities and show effective cytotoxic properties. Methodology: Here, 13 new compounds (C1-C13) were synthesized and characterized. Along with these new compounds, 16 previously reported phenyl/napthylacetyl pentanoic acid derivatives (C14-C29) were biologically evaluated. Results: Compounds C6 and C27 showed good cytotoxicity against leukemia cell line Jurkat E6.1. The mechanisms of cytotoxicity of these compounds were confirmed by DNA deformation assay and reactive oxygen species assay. MMP-2 and HDAC8 expression assays suggested the dual inhibiting property of these two compounds. These findings were supported by results of molecular docking studies. In silico pharmacokinetic properties showed compounds C6 and C27 have high gastrointestinal absorption. Conclusion: This study highlights the action of phenyl/naphthylacetyl pentanoic acid derivatives as anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Simulación del Acoplamiento Molecular , Ácidos Pentanoicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Familia 2 del Citocromo P450/antagonistas & inhibidores , Familia 2 del Citocromo P450/metabolismo , Daño del ADN/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica/efectos de los fármacos , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Relación Estructura-Actividad
10.
J Med Chem ; 64(22): 16319-16327, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34784474

RESUMEN

At the heart of drug design is the discovery of molecules that bind with high affinity to their drug targets. Biotin forms the strongest known noncovalent ligand-protein interactions with avidin and streptavidin, achieving femtomolar and picomolar affinities, respectively. This is made even more exceptional because biotin achieves this with a meagre molecular weight of 240 Da. Surprisingly, the approaches by which biotin achieves this are not in the standard repertoire of current medicinal chemistry practice. Biotin's biggest lesson is the importance of nonclassical H-bonds in protein-ligand complexes. Most of biotin's affinity stems from its flexible valeric acid side chain that forms CH-π, CH-O, and classical H-bonds with the lipophilic region of the binding pocket. Biotin also utilizes an oxyanion hole, a sulfur-centered H-bond, and water solvation in the bound state to achieve its potency. The facets and advantages of biotin's approach to binding should be more widely adopted in drug design.


Asunto(s)
Biotina/química , Diseño de Fármacos , Sitios de Unión , Enlace de Hidrógeno , Estructura Molecular , Ácidos Pentanoicos/química , Estreptavidina/química
12.
Bioorg Chem ; 114: 105158, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34378541

RESUMEN

Acetylation of NF-κB's RelA subunit at lysine-310 (AcLys310) helps to maintain constitutive NF-κB activity in cancers such as triple-negative breast cancer (TNBC). Bromodomain-containing factor BRD4 binds to acetylated RelA to promote the activity of NF-κB. Hence, interfering with the acetylated RelA-BRD4 interaction is a potential strategy for treating NF-κB-driven TNBC. Here, a new compound 13a was obtained by structural optimization and modification of our previously reported compound. In comparison with the well-known BRD4 inhibitor (+)-JQ1, 13a showed more potent anticancer activity in NF-κB-active MDA-MB-231 cells. Mechanistically, 13a antagonized the protein-protein interaction (PPI) between BRD4 and acetylated RelA, decreased levels of IL-6, IL-8, Snail, Vimentin, and ZEB1, induced cell senescence and DNA damage, and weakened the adhesion, metastasis, and invasion ability of TNBC cells. Our results provide insights into avenues for the further development of potent BRD4-acetylated RelA PPI inhibitors. Moreover, our findings highlight the effectiveness and feasibility of blocking the interaction between BRD4 and acetylated RelA against NF-κB-active cancers, and of screening antagonists of this PPI.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Indoles/farmacología , FN-kappa B/antagonistas & inhibidores , Ácidos Pentanoicos/farmacología , Factores de Transcripción/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/química , Modelos Moleculares , Estructura Molecular , FN-kappa B/metabolismo , Ácidos Pentanoicos/química , Relación Estructura-Actividad , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
13.
J Neurochem ; 158(5): 1074-1082, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34273193

RESUMEN

Imbalance in the metabolic pathway linking excitatory and inhibitory neurotransmission has been implicated in multiple psychiatric and neurologic disorders. Recently, we described enantiomer-specific effects of 2-methylglutamate, which is not decarboxylated to the corresponding methyl analogue of gamma-aminobutyric acid (GABA): 4-aminopentanoic acid (4APA). Here, we tested the hypothesis that 4APA also has enantiomer-specific actions in brain. Mouse cerebral synaptosome uptake (nmol/mg protein over 30 min) of (R)-4APA or (S)-4APA was time and temperature dependent; however, the R enantiomer had greater uptake, reduction of endogenous GABA concentration, and release following membrane depolarization than did the S enantiomer. (S)-4APA exhibited some weak agonist (GABAA α4ß3δ, GABAA α5ß2γ2, and GABAB B1/B2) and antagonist (GABAA α6ß2γ2) activity while (R)-4APA showed weak agonist activity only with GABAA α5ß2γ2. Both 4APA enantiomers (100 mg/kg IP) were detected in mouse brain 10 min after injection, and by 1 hr had reached concentrations that were stable over 6 hr; both enantiomers were cleared rapidly from mouse serum over 6 hr. Two-month-old mice had no mortality following 100-900 mg/kg IP of each 4APA enantiomer but did have similar dose-dependent reduction in distance moved in a novel cage. Neither enantiomer at 30 or 100 mg/kg impacted outcomes in 23 measures of well-being, activity chamber, or withdrawal from hot plate. Our results suggest that enantiomers of 4APA are active in mouse brain, and that (R)-4APA may act as a novel false neurotransmitter of GABA. Future work will focus on disease models and on possible applications as neuroimaging agents.


Asunto(s)
Conducta Exploratoria/fisiología , Locomoción/fisiología , Neurotransmisores/química , Ácidos Pentanoicos/química , Ácido gamma-Aminobutírico/química , Animales , Encéfalo/metabolismo , Química Encefálica , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/farmacología , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Estereoisomerismo , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
14.
Inorg Chem ; 60(13): 9345-9358, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34137256

RESUMEN

Neuronal nitric oxide synthase (nNOS) is one of the three isoforms of nitric oxide synthase (NOS). The other two isoforms include inducible NOS (iNOS) and endothelial NOS (eNOS). These three isoforms of NOS are widely present in both human and other mammals and are responsible for the biosynthesis of NO. As an essential biological molecule, NO plays an essential role in neurotransmission, immune response, and vasodilation; however, the overproduction of NO can cause a series of diseases. Thus, the selective inhibition of three isoforms of NOS has been considered to be important in treating related diseases. The active sites of the three enzymes are highly conserved, causing the selective inhibition of the three enzymes to be a great challenge. (S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic acid (1) has been experimentally proved to be a selective and time-dependent irreversible inhibitor of nNOS, and three pathways, including sulfide oxidation, oxidative dethiolation, and oxidative demethylation, have been suggested. In this work, we performed quantum mechanics/molecular mechanics calculations to verify the chemical conversion of inactivator 1. Although we agree with the previously suggested chemical transformation process, our calculations demonstrated that there are lower energy pathways to accomplish both oxidative dethiolation and oxidative demethylation. These three branching reactions are competitive, but only dethiolation and demethylation reactions can generate inhibitory intermediates. As a powerful time-dependent irreversible inhibitor of nNOS, the key sulfur atom and middle imine are all necessary. Our calculation results not only verified the chemical reaction of inhibitor 1 occurring in the enzymatic active site but also explained the inactivation mechanism of inhibitor 1. This is also the first verified example of the heme-enzyme-catalyzed S-demethylation mechanism.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Ácidos Pentanoicos/farmacología , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ácidos Pentanoicos/síntesis química , Ácidos Pentanoicos/química
15.
J Neuroimaging ; 31(3): 517-523, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33783911

RESUMEN

BACKGROUND AND PURPOSE: The role of the cerebellum in olfactory function is not fully understood. In this study, we tried to combine resting state and task functional MRI (fMRI) to improve the understanding of the cerebellum during olfactory processing. METHODS: A resting state and a block paradigm of olfactory stimulation fMRI were scanned in 50 subjects. The olfactory stimuli, including phenylethyl alcohol and isovaleric acid, were alternately delivered to the subject using a custom-built olfactometer through air flow. The cerebellar activations elicited by isovaleric acid were subsequently used in the seed-based resting-state functional connectivity study. RESULTS: Phenylethyl alcohol did not induce any cerebellum activation, while isovaleric acid with a more unpleasant smell elicited significant cerebellum activations, primarily in the bilateral posterior lateral hemispheres (bilateral lobule crus I and right lobule VI). Seed-based functional connectivity analysis revealed significant within-cerebellum and corticocerebellar connections. CONCLUSIONS: The results imply that the cerebellum is probably involved in olfactory-related responses caused by unpleasant odor but does not directly participate in olfactory perception. Our results may further improve the understanding of the cerebellum in olfactory function.


Asunto(s)
Mapeo Encefálico/métodos , Cerebelo/diagnóstico por imagen , Cerebelo/fisiología , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Olfato/fisiología , Adulto , Femenino , Hemiterpenos/química , Humanos , Masculino , Ácidos Pentanoicos/química , Alcohol Feniletílico/química
16.
Sci Rep ; 11(1): 2519, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510252

RESUMEN

Valerian root (Valeriana officinalis) is a popular and widely available herbal supplement used to treat sleeping disorders and insomnia. The herb's ability to ameliorate sleep dysfunction may signify an unexplored anti-tumorigenic effect due to the connection between circadian factors and tumorigenesis. Of particular interest are the structural similarities shared between valeric acid, valerian's active chemical ingredient, and certain histone deacteylase (HDAC) inhibitors, which imply that valerian may play a role in epigenetic gene regulation. In this study, we tested the hypothesis that the circadian-related herb valerian can inhibit breast cancer cell growth and explored epigenetic changes associated with valeric acid treatment. Our results showed that aqueous valerian extract reduced growth of breast cancer cells. In addition, treatment of valeric acid was associated with decreased breast cancer cell proliferation, migration, colony formation and 3D formation in vitro in a dose- and time-dependent manner, as well as reduced HDAC activity and a global DNA hypomethylation. Overall, these findings demonstrate that valeric acid can decrease the breast cancer cell proliferation possibly by mediating epigenetic modifications such as the inhibition of histone deacetylases and alterations of DNA methylation. This study highlights a potential utility of valeric acid as a novel HDAC inhibitor and a therapeutic agent in the treatment of breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácidos Pentanoicos/farmacología , Valeriana/química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Metilación de ADN/efectos de los fármacos , Femenino , Redes Reguladoras de Genes , Humanos , Ácidos Pentanoicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
17.
Int J Biol Macromol ; 174: 449-456, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33485890

RESUMEN

Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps. Characteristic peaks such as 2-butenoic acid, 2-pentenoic acid, and hexadecanoic acid regarding PHA compositions and cell components were identified. Considering constituents of cells and ratios of peak areas of dehydrated monomers to hexadecanoic acid, a simple equation for estimation of PHA contents in microbial cells was derived. Also, monomer compositions of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in R. eutropha could be successfully determined based on peak area of 2-butenoic acid and 2-pentenoic acid of Py-GC/MS, which are the corresponding species of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) in PHBV. Correlation of results between GC-FID and Py-GC/MS could be fitted very well. This method shows similar results for the samples obtained from same experimental conditions, allowing rapid and reliable analysis. Py-GC/MS can be a promising tool to rapidly screen PHA-positive strains based on polymer contents along with monomer compositions.


Asunto(s)
Cupriavidus necator/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Polihidroxialcanoatos/análisis , Ácido 3-Hidroxibutírico/química , Técnicas de Cultivo Celular por Lotes , Membrana Celular/química , Crotonatos/química , Cupriavidus necator/química , Escherichia coli/química , Cromatografía de Gases y Espectrometría de Masas , Ácidos Pentanoicos/química , Polihidroxialcanoatos/aislamiento & purificación , Pirólisis
18.
Molecules ; 25(18)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933154

RESUMEN

Kuromoji (Lindera umbellata) is a tree that grows throughout Japan. The components of kuromoji essential oil have antitumor and aromatherapy effects. However, the composition of the hydrosol, obtained as a by-product of the essential oil process, is unknown. Furthermore, it is unknown whether kuromoji essential oil has a deodorizing effect. Therefore, the purpose of the current study was to compare the chemical composition of kuromoji essential oil and hydrosol, as well as evaluate the deodorizing effect of the former. The chemical composition of samples was evaluated using gas chromatography-mass spectrometry (GC-MS). Additionally, the deodorizing effect of Kuromoji essential oil was investigated with the detector tube method using ammonia, hydrogen sulfide, methyl mercaptan, and isovaleric acid. Linalool was the most abundant component in both the essential oil and hydrosol; however, its proportion was higher in the hydrosol (57.5%) than in the essential oil (42.8%). The hydrosol contained fewer chemical components, but higher proportions of trans-geraniol and ethanol. Moreover, the essential oil eliminated 50% of ammonia and 97.6% or more of isovaleric acid. Interestingly, linalool was soluble in the hydrosol and did not irritate the skin. This suggests that the hydrosol may be an effective foot care product.


Asunto(s)
Monoterpenos Acíclicos/aislamiento & purificación , Desodorantes/aislamiento & purificación , Lindera/química , Aceites Volátiles/química , Aceites de Plantas/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacología , Amoníaco/química , Desodorantes/farmacología , Etanol/química , Cromatografía de Gases y Espectrometría de Masas , Hemiterpenos/química , Sulfuro de Hidrógeno/química , Japón , Aceites Volátiles/farmacología , Ácidos Pentanoicos/química , Aceites de Plantas/farmacología , Compuestos de Sulfhidrilo/química
19.
Biomolecules ; 10(7)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698323

RESUMEN

Dual-functioning additives with plasticizing and antibacterial functions were designed by exploiting the natural aromatic compound eugenol and green platform chemical levulinic acid or valeric acid that can be produced from biobased resources. One-pot synthesis methodology was utilized to create three ester-rich plasticizers. The plasticizers were thoroughly characterized by several nuclear magnetic resonance techniques (1H NMR, 13C NMR, 31P NMR, HSQC, COSY, HMBC) and by electrospray ionization-mass spectrometry (ESI-MS) and their performances, as plasticizers for polylactide (PLA), were evaluated. The eugenyl valerate was equipped with a strong capability to depress the glass transition temperature (Tg) of PLA. Incorporating 30 wt% plasticizer led to a reduction of the Tg by 43 °C. This was also reflected by a remarkable change in mechanical properties, illustrated by a strain at break of 560%, almost 110 times the strain for the breaking of neat PLA. The two eugenyl levulinates also led to PLA with significantly increased strain at breaking. The eugenyl levulinates portrayed higher thermal stabilities than eugenyl valerate, both neat and in PLA blends. The different concentrations of phenol, carboxyl and alcohol functional groups in the three plasticizers caused different bactericidal activities. The eugenyl levulinate with the highest phenol-, carboxyl- and alcohol group content significantly inhibited the growth of Staphylococcus aureus and Escherichia coli, while the other two plasticizers could only inhibit the growth of Staphylococcus aureus. Thus, the utilization of eugenol as a building block in plasticizer design for PLA illustrated an interesting potential for production of additives with dual functions, being both plasticizers and antibacterial agents.


Asunto(s)
Antibacterianos/farmacología , Eugenol/farmacología , Plastificantes/farmacología , Poliésteres/química , Antibacterianos/química , Rastreo Diferencial de Calorimetría , Escherichia coli/efectos de los fármacos , Eugenol/química , Tecnología Química Verde , Ácidos Levulínicos/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Ácidos Pentanoicos/química , Plastificantes/química , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/efectos de los fármacos , Termodinámica
20.
Biosci Biotechnol Biochem ; 84(8): 1541-1545, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32419623

RESUMEN

The volatile components emitted from two scale insects, Ceroplastes japonicus and Ceroplastes rubens, were identified using GC-MS analysis. The major volatile components of the solvent extract from C. japonicus were α-humulene (35.8%) and δ-cadinene (17.0%), while those of C. rubens were ß-selinene (10.3%) and ß-elemene (5.1%). In GC/olfactometry, linalool, butyric acid, 3-methylbutyric acid, 2-methylbutyric acid, and vanillin were identified as the odor-active components of the extract from C. japonicus, in addition to trace amounts of trans-4,5-epoxy-(2E)-decenal, 4-methyl-(3E)-hexenoic acid, and phenylacetic acid. With regard to C. rubens, trans-4,5-epoxy-(2E)-decenal, 3-methylbutyric acid, and phenylacetic acid were identified as the odor-active components. Besides, decan-1,4-olide (γ-decalactone) with milky cherry-like note and 3-hydroxy-4,5-dimethylfuran-2(5H)-one (sotolone) with brown sugar-like note were also detected as the characteristic cherry-like sweet-and-sour note of these two scale insects. ABBREVIATIONS: GC: Gas chromatography; GC/O: gas chromatography/olfactometry.


Asunto(s)
Hemípteros/química , Odorantes/análisis , Olfato/fisiología , Compuestos Orgánicos Volátiles/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/aislamiento & purificación , Aldehídos/química , Aldehídos/aislamiento & purificación , Animales , Benzaldehídos/química , Benzaldehídos/aislamiento & purificación , Butiratos/química , Butiratos/aislamiento & purificación , Ácido Butírico/química , Ácido Butírico/aislamiento & purificación , Caproatos/química , Caproatos/aislamiento & purificación , Compuestos Epoxi/química , Compuestos Epoxi/aislamiento & purificación , Furanos/química , Furanos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Hemípteros/fisiología , Hemiterpenos/química , Hemiterpenos/aislamiento & purificación , Lactonas/química , Lactonas/aislamiento & purificación , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/aislamiento & purificación , Ácidos Pentanoicos/química , Ácidos Pentanoicos/aislamiento & purificación , Fenilacetatos/química , Fenilacetatos/aislamiento & purificación , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/aislamiento & purificación , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/aislamiento & purificación , Tetrahidronaftalenos/química , Tetrahidronaftalenos/aislamiento & purificación , Compuestos Orgánicos Volátiles/clasificación , Compuestos Orgánicos Volátiles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA