Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
J Am Soc Mass Spectrom ; 35(7): 1490-1496, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830009

RESUMEN

Collision-induced unfolding (CIU) of protein ions, monitored by ion mobility-mass spectrometry, can be used to assess the stability of their compact gas-phase fold and hence provide structural information. The bacterial elongation factor EF-Tu, a key protein for mRNA translation in prokaryotes and hence a promising antibiotic target, has been studied by CIU. The major [M + 12H]12+ ion of EF-Tu unfolded in collision with Ar atoms between 40 and 50 V, corresponding to an Elab energy of 480-500 eV. Binding of the cofactor analogue GDPNP and the antibiotic enacyloxin IIa stabilized the compact fold of EF-Tu, although dissociation of the latter from the complex diminished its stabilizing effect at higher collision energies. Molecular dynamics simulations of the [M + 12H]12+ EF-Tu ion showed similar qualitative behavior to the experimental results.


Asunto(s)
Antibacterianos , Simulación de Dinámica Molecular , Factor Tu de Elongación Peptídica , Desplegamiento Proteico , Espectrometría de Masa por Ionización de Electrospray , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Antibacterianos/química
2.
Front Immunol ; 15: 1424385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868764

RESUMEN

The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Factor Tu de Elongación Peptídica/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Enfermedades Mitocondriales/metabolismo , Apoptosis , Autofagia
3.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572748

RESUMEN

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Asunto(s)
Aminoácidos , Anticodón , Anticodón/genética , Anticodón/química , Aminoácidos/química , Aminoácidos/genética , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Mutación , Codón/genética , Ribosomas/metabolismo , Ribosomas/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , ARN de Transferencia de Prolina/química , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Nat Struct Mol Biol ; 31(5): 810-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538914

RESUMEN

The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli , Modelos Moleculares , Factor Tu de Elongación Peptídica , ARN de Transferencia de Isoleucina , Ribosomas , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , Codón/metabolismo , Codón/genética , Anticodón/química , Anticodón/metabolismo , Conformación de Ácido Nucleico , Isoleucina/metabolismo , Isoleucina/química , ARN Mensajero/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Lisina/análogos & derivados , Nucleósidos de Pirimidina
5.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355796

RESUMEN

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Asunto(s)
Proteínas Bacterianas , Respuesta al Choque por Frío , Factores de Terminación de Péptidos , Biosíntesis de Proteínas , Psychrobacter , Proteínas Ribosómicas , Ribosomas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestructura , Microscopía por Crioelectrón , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/ultraestructura
6.
Trends Biochem Sci ; 49(3): 195-198, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195289

RESUMEN

Targeting translational factor proteins (TFPs) presents significant promise for the development of innovative antitubercular drugs. Previous insights from antibiotic binding mechanisms and recently solved 3D crystal structures of Mycobacterium tuberculosis (Mtb) elongation factor thermo unstable-GDP (EF-Tu-GDP), elongation factor thermo stable-EF-Tu (EF-Ts-EF-Tu), and elongation factor G-GDP (EF-G-GDP) have opened up new avenues for the design and development of potent antituberculosis (anti-TB) therapies.


Asunto(s)
Antituberculosos , Factor Tu de Elongación Peptídica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Proteínas/metabolismo
7.
J Bacteriol ; 206(2): e0032923, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38289064

RESUMEN

Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.


Asunto(s)
Escherichia coli , Factor Tu de Elongación Peptídica , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Mutación , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Antecedentes Genéticos
8.
Plant J ; 117(4): 1165-1178, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983611

RESUMEN

In the cyanobacterium Synechocystis sp. PCC 6803, translation factor EF-Tu is inactivated by reactive oxygen species (ROS) via oxidation of Cys82 and the oxidation of EF-Tu enhances the inhibition of the repair of photosystem II (PSII) by suppressing protein synthesis. In our present study, we generated transformants of Synechocystis that overexpressed a mutated form of EF-Tu, designated EF-Tu (C82S), in which Cys82 had been replaced by a Ser residue, and ROS-scavenging enzymes individually or together. Expression of EF-Tu (C82S) alone in Synechocystis enhanced the repair of PSII under strong light, with the resultant mitigation of PSII photoinhibition, but it stimulated the production of ROS. However, overexpression of superoxide dismutase and catalase, together with the expression of EF-Tu (C82S), lowered intracellular levels of ROS and enhanced the repair of PSII more significantly under strong light, via facilitation of the synthesis de novo of the D1 protein. By contrast, the activity of photosystem I was hardly affected in wild-type cells and in all the lines of transformed cells under the same strong-light conditions. Furthermore, transformed cells that overexpressed EF-Tu (C82S), superoxide dismutase, and catalase were able to survive longer under stronger light than wild-type cells. Thus, the reinforced capacity for both protein synthesis and ROS scavenging allowed both photosynthesis and cell proliferation to tolerate strong light.


Asunto(s)
Antioxidantes , Synechocystis , Antioxidantes/metabolismo , Catalasa/genética , Catalasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Luz , Synechocystis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
Plant J ; 117(4): 1250-1263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991990

RESUMEN

High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.


Asunto(s)
Malus , Termotolerancia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Malus/genética , Malus/metabolismo , Agregado de Proteínas , Chaperonas Moleculares/metabolismo , Plantas Modificadas Genéticamente/metabolismo
10.
Nat Commun ; 14(1): 7068, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923743

RESUMEN

Legionella pneumophila (LP) secretes more than 300 effectors into the host cytosol to facilitate intracellular replication. One of these effectors, SidH, 253 kDa in size with no sequence similarity to proteins of known function is toxic when overexpressed in host cells. SidH is regulated by the LP metaeffector LubX which targets SidH for degradation in a temporal manner during LP infection. The mechanism underlying the toxicity of SidH and its role in LP infection are unknown. Here, we determined the cryo-EM structure of SidH at 2.7 Å revealing a unique alpha helical arrangement with no overall similarity to known protein structures. Surprisingly, purified SidH came bound to a E. coli EF-Tu/t-RNA/GTP ternary complex which could be modeled into the cryo-EM density. Mutation of residues disrupting the SidH-tRNA interface and SidH-EF-Tu interface abolish the toxicity of overexpressed SidH in human cells, a phenotype confirmed in infection of Acanthamoeba castellani. We also present the cryo-EM structure of SidH in complex with a U-box domain containing ubiquitin ligase LubX delineating the mechanism of regulation of SidH. Our data provide the basis for the toxicity of SidH and into its regulation by the metaeffector LubX.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/metabolismo , Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Bacterianas/metabolismo
11.
Protein Expr Purif ; 210: 106322, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329934

RESUMEN

The protein Family with sequence similarity 210 member A (FAM210A) is a mitochondrial inner membrane protein that regulates the protein synthesis of mitochondrial DNA encoded genes. However, how it functions in this process is not well understood. Developing and optimizing a protein purification strategy will facilitate biochemical and structural studies of FAM210A. Here, we developed a method to purify human FAM210A with deleted mitochondrial targeting signal sequence using the MBP-His10 fusion in Escherichia coli. The recombinant FAM210A protein was inserted into the E. coli cell membrane and purified from isolated bacterial cell membranes, followed by a two-step process using Ni-NTA resin-based immobilized-metal affinity chromatography (IMAC) and ion exchange purification. A pulldown assay validated the functionality of purified FAM210A protein interacting with human mitochondrial elongation factor EF-Tu in HEK293T cell lysates. Taken together, this study developed a method for purification of the mitochondrial transmembrane protein FAM210A partially complexed with E.coli derived EF-Tu and provides an opportunity for future potential biochemical and structural studies of recombinant FAM210A protein.


Asunto(s)
Escherichia coli , Factor Tu de Elongación Peptídica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células HEK293 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
12.
Appl Environ Microbiol ; 89(3): e0219022, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36847513

RESUMEN

The human gastrointestinal tract is inhabited by trillions of symbiotic bacteria that form a complex ecological community and influence human physiology. Symbiotic nutrient sharing and nutrient competition are the most studied relationships in gut commensals, whereas the interactions underlying homeostasis and community maintenance are not fully understood. Here, we provide insights into a new symbiotic relationship wherein the sharing of secreted cytoplasmic proteins, called "moonlighting proteins," between two heterologous bacterial strains (Bifidobacterium longum and Bacteroides thetaiotaomicron) was observed to affect the adhesion of bacteria to mucins. B. longum and B. thetaiotaomicron were cocultured using a membrane-filter system, and in this system the cocultured B. thetaiotaomicron cells showed greater adhesion to mucins compared to that shown by monoculture cells. Proteomic analysis showed the presence of 13 B. longum-derived cytoplasmic proteins on the surface of B. thetaiotaomicron. Moreover, incubation of B. thetaiotaomicron with the recombinant proteins GroEL and elongation factor Tu (EF-Tu)-two well-known mucin-adhesive moonlighting proteins of B. longum-led to an increase in the adhesion of B. thetaiotaomicron to mucins, a result attributed to the localization of these proteins on the B. thetaiotaomicron cell surface. Furthermore, the recombinant EF-Tu and GroEL proteins were observed to bind to the cell surface of several other bacterial species; however, the binding was species dependent. The present findings indicate a symbiotic relationship mediated by the sharing of moonlighting proteins among specific strains of B. longum and B. thetaiotaomicron. IMPORTANCE The adhesion of intestinal bacteria to the mucus layer is an important colonization strategy in the gut environment. Generally, the bacterial adhesion process is a characteristic feature of the individual cell surface-associated adhesion factors secreted by a particular bacterium. In this study, coculture experiments between Bifidobacterium and Bacteroides show that the secreted moonlighting proteins adhere to the cell surface of coexisting bacteria and alter the adhesiveness of the bacteria to mucins. This finding indicates that the moonlighting proteins act as adhesion factors for not only homologous strains but also for coexisting heterologous strains. The presence of a coexisting bacterium in the environment can significantly alter the mucin-adhesive properties of another bacterium. The findings from this study contribute to a better understanding of the colonization properties of gut bacteria through the discovery of a new symbiotic relationship between them.


Asunto(s)
Factor Tu de Elongación Peptídica , Proteómica , Humanos , Factor Tu de Elongación Peptídica/metabolismo , Tracto Gastrointestinal/microbiología , Mucinas/metabolismo , Bacteroides/metabolismo
13.
Biochem J ; 480(5): 307-318, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-36825659

RESUMEN

Translational elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803. However, the sensitivity to ROS of chloroplast-localized EF-Tu (cpEF-Tu) of plants remains to be elucidated. In the present study, we generated a recombinant cpEF-Tu protein of Arabidopsis thaliana and examined its sensitivity to ROS in vitro. In cpEF-Tu that lacked a bound nucleotide, one of the two cysteine residues, Cys149 and Cys451, in the mature protein was sensitive to oxidation by H2O2, with the resultant formation of sulfenic acid. The translational activity of cpEF-Tu, as determined with an in vitro translation system, derived from Escherichia coli, that had been reconstituted without EF-Tu, decreased with the oxidation of a cysteine residue. Replacement of Cys149 with an alanine residue rendered cpEF-Tu insensitive to inactivation by H2O2, indicating that Cys149 might be the target of oxidation. In contrast, cpEF-Tu that had bound either GDP or GTP was less sensitive to oxidation by H2O2 than nucleotide-free cpEF-Tu. The addition of thioredoxin f1, a major thioredoxin in the Arabidopsis chloroplast, to oxidized cpEF-Tu allowed the reduction of Cys149 and the reactivation of cpEF-Tu, suggesting that the oxidation of cpEF-Tu might be a reversible regulatory mechanism that suppresses the chloroplast translation system in a redox-dependent manner.


Asunto(s)
Arabidopsis , Cisteína , Cisteína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Cloroplastos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Guanosina Trifosfato/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220038, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633283

RESUMEN

Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Aminoácidos , Factor Tu de Elongación Peptídica , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Aminoácidos/genética , Ribosomas/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
15.
New Phytol ; 237(6): 2493-2504, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564969

RESUMEN

Agrobacterium tumefaciens microbe-associated molecular pattern elongation factor Tu (EF-Tu) is perceived by orthologs of the Arabidopsis immune receptor EFR activating pattern-triggered immunity (PTI) that causes reduced T-DNA-mediated transient expression. We altered EF-Tu in A. tumefaciens to reduce PTI and improved transformation efficiency. A robust computational pipeline was established to detect EF-Tu protein variation in a large set of plant bacterial species and identified EF-Tu variants from bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that allow the pathogen to escape EFR perception. Agrobacterium tumefaciens strains were engineered to substitute EF-Tu with DC3000 variants and examined their transformation efficiency in plants. Elongation factor Tu variants with rarely occurred amino acid residues were identified within DC3000 EF-Tu that mitigates recognition by EFR. Agrobacterium tumefaciens strains were engineered by expressing DC3000 EF-Tu instead of native agrobacterial EF-Tu and resulted in decreased plant immunity detection. These engineered A. tumefaciens strains displayed an increased efficiency in transient expression in both Arabidopsis thaliana and Camelina sativa. The results support the potential application of these strains as improved vehicles to introduce transgenic alleles into members of the Brassicaceae family.


Asunto(s)
Agrobacterium tumefaciens , Proteínas de Arabidopsis , Arabidopsis , Técnicas de Transferencia de Gen , Factor Tu de Elongación Peptídica , Inmunidad de la Planta , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Inmunidad de la Planta/genética , Pseudomonas syringae/genética
16.
Autophagy ; 19(6): 1745-1763, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36449354

RESUMEN

Macroautophagy/autophagy is a conserved degradation pathway in eukaryotes that is required for recycling unwanted intracellular components, maintaining homeostasis, and coping with biotic and abiotic stresses. Pathogens have evolved to subvert autophagic machinery by secreting host cell-entering effector proteins. Here, we provided evidence that an apple autophagy-related gene MdATG8i, activated autophagy and contributed to resistance against Valsa canker caused by Valsa Mali (Vm) when being overexpressed in apple. MdATG8i interacted with a plastid elongation factor Tu (MdEF-Tu) which became insoluble and aggregated during Vm infection and was degraded through the autophagy pathway. Intriguingly, we identified a highly-induced effector secreted from Vm, Vm1G-1794, which competitively interacted with MdATG8i, suppressed autophagy, and depleted MdEF-Tu out of MdATG8i complexes. The formation of stable MdEF-Tu aggregates caused by Vm1G-1794 promoted the susceptibility of apple to Vm. Overall, our study demonstrated that MdATG8i contributed to Vm resistance by targeting and degrading MdEF-Tu, and Vm1G-1794 competed with MdEF-Tu to target MdATG8i and prevent MdEF-Tu degradation, thus favoring infection.Abbreviations: 35S: cauliflower mosaic virus 35S promoter; AIM: ATG8-interacting motif; ATG8-PE: ATG8 conjugated with phosphatidylethanolamine; BiFC: biomolecular fluorescence complementation; Con A: concanamycin A; Co-IP: co-immunoprecipitation; DEPs: differentially expressed proteins; DMSO: dimethyl sulfoxide; GFP: green fluorescent protein; hpt: hours post-treatment; LCI: luciferase complementation imaging; MdATG8i: autophagy-related protein 8i in Malus domestica; MDC: monodansylcadaverine; MdEF-Tu: elongation factor Tu in Malus domestica; MdNBR1: neighbor of BRCA1 in Malus domestica; N. benthamiana: Nicotiana benthamiana; OE: overexpression; PAMP: pathogen-associated molecular pattern; PTI: pattern-triggered immunity; qRT-PCR: quantitative reverse transcription PCR; RFP: red fluorescent protein; RNAi: RNA interference; ROS: reactive oxygen species; Ub: ubiquitin; V. Mali: Valsa Mali; WT: wild-type plant; YFP: yellow fluorescent protein.


Asunto(s)
Ascomicetos , Malus , Malus/genética , Malus/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Autofagia/genética , Ascomicetos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Enfermedades de las Plantas
17.
Int J Biol Macromol ; 224: 32-47, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442565

RESUMEN

The adherent colonization of lactic acid bacteria in the animal intestine is the basis for their probiotic effect, and their bacteria surface proteins play an important role in this process. Previous work has demonstrated that Lactobacillus plantarum HC-2 can adhere and colonize the intestine of Penaeus vannamei, modulate the intestinal immune response and microbial diversity, protect the intestinal tissues from pathogenic damage, and improve the protection rate of shrimp. The aim of this work was to identify adhesion molecules on the surface of HC-2 and its adhesion receptors in the intestinal epithelium of shrimp. The elongation factor Tu (EF-Tu) on the surface of HC-2 was found to interact with Fibronectin (Fib) in the shrimp intestine by immunoblotting and yeast two-hybrid assays, and this interaction relationship was verified by immunoprecipitation (Co-IP). The adhesion of HC-2 to Caco-2 cells could be blocked via EF-Tu antibody confinement, and the adhesion of Fib to HC-2 could be blocked by Fib antibody confinement. Expression of Fib on the surface of HEK293T cells revealed a significant increase in the adhesion rate of HC-2 to HEK293T cells. Using immunofluorescence, a significant reduction in HC-2 adhesion to the intestine of shrimp was observed after blocking the Fib site in the shrimp intestine, particularly in Vibrio parahaemolyticus E1-infected intestines. In addition, the recombinant protein rEF-Tu was found to promote the growth of Caco-2 cells in a certain concentration range and significantly inhibit the apoptosis induced by LPS, Staphylococcus aureus and V. parahaemolyticus E1. Our results indicate that EF-Tu might participate in gut immunity and homeostasis, through its binding to the shrimp intestinal cells and inhibiting apoptosis.


Asunto(s)
Lactobacillus plantarum , Penaeidae , Animales , Humanos , Lactobacillus plantarum/metabolismo , Proteínas de la Membrana/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/farmacología , Células CACO-2 , Lipopolisacáridos/farmacología , Fibronectinas/metabolismo , Células HEK293 , Mucosa Intestinal/metabolismo , Apoptosis
18.
Cell Signal ; 101: 110524, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379377

RESUMEN

Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.


Asunto(s)
Proteínas Mitocondriales , Factor Tu de Elongación Peptídica , Animales , Ratones , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Proteína Tirosina Quinasa CSK , Proteínas Mitocondriales/metabolismo , Mamíferos/metabolismo , Fosforilación Oxidativa , Familia-src Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fyn
19.
Nucleic Acids Res ; 50(22): 13114-13127, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484105

RESUMEN

Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.


Asunto(s)
Dominio AAA , Factor Tu de Elongación Peptídica , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , NAD/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Salmonella , Pliegue de Proteína
20.
Cell Death Dis ; 13(12): 1020, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470869

RESUMEN

Doxorubicin (DOX) is an effective anthracycline chemotherapeutic anticancer drug with its life-threatening cardiotoxicity severely limiting its clinical application. Mitochondrial damage-induced cardiomyocyte death is considered an essential cue for DOX cardiotoxicity. FUN14 domain containing 1 (FUNDC1) is a mitochondrial membrane protein participating in the regulation of mitochondrial integrity in multiple diseases although its role in DOX cardiomyopathy remains elusive. Here, we examined whether PANoptosis, a novel type of programmed cell death closely associated with mitochondrial damage, was involved in DOX-induced heart injury, and FUNDC1-mediated regulation of cardiomyocyte PANoptosis, if any. FUNDC1 was downregulated in heart tissues in patients with dilated cardiomyopathy (DCM) and DOX-challenged mice. FUNDC1 deficiency aggravated DOX-induced cardiac dysfunction, mitochondrial injury, and cardiomyocyte PANoptosis. Further examination revealed that FUNDC1 countered cytoplasmic release of mitochondrial DNA (mtDNA) and activation of PANoptosome through interaction with mitochondrial Tu translation elongation factor (TUFM), a key factor in the translational expression and repair of mitochondrial DNA, via its 96-133 amino acid domain. TUFM intervention reversed FUNDC1-elicited protection against DOX-induced mtDNA cytosolic release and cardiomyocyte PANoptosis. Our findings shed light toward a beneficial role of FUNDC1 in DOX cardiotoxicity and cardiomyocyte PANoptosis, thus offering therapeutic promises in DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Proteínas de la Membrana , Proteínas Mitocondriales , Miocitos Cardíacos , Factor Tu de Elongación Peptídica , Animales , Ratones , Apoptosis , Cardiotoxicidad/metabolismo , ADN Mitocondrial/genética , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Factor Tu de Elongación Peptídica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...