Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
Mol Biol Rep ; 51(1): 891, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110355

RESUMEN

BACKGROUND: Peptide transporter 1 (PepT1) transports bacterial oligopeptide products and induces inflammation of the bowel. Nutritional peptides compete for the binding of intestinal bacterial products to PepT1. We investigated the mechanism of short-peptide-based enteral nutrition (SPEN) on the damage to the gut caused by the bacterial oligopeptide product muramyl dipeptide (MDP), which is transported by PepT1. The gut-lung axis is a shared mucosal immune system, and immune responses and disorders can affect the gut-respiratory relationship. METHODS AND RESULTS: Sprague-Dawley rats were gavaged with solutions containing MDP, MDP + SPEN, MDP + intact-protein-based enteral nutrition (IPEN), glucose as a control, or glucose with GSK669 (a NOD2 antagonist). Inflammation, mitochondrial damage, autophagy, and apoptosis were explored to determine the role of the PepT1-nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-beclin-1 signaling pathway in the small intestinal mucosa. MDP and proinflammatory factors of lung tissue were explored to determine that MDP can migrate to lung tissue and cause inflammation. Induction of proinflammatory cell accumulation and intestinal damage in MDP gavage rats was associated with increased NOD2 and Beclin-1 mRNA expression. IL-6 and TNF-α expression and apoptosis were increased, and mitochondrial damage was severe, as indicated by increased mtDNA in the MDP group compared with controls. MDP levels and expression of proinflammatory factors in lung tissue increased in the MDP group compared with the control group. SPEN, but not IPEN, eliminated these impacts. CONCLUSIONS: Gavage of MDP to rats resulted in damage to the gut-lung axis. SPEN reverses the adverse effects of MDP. The PepT1-NOD2-beclin-1 pathway plays a role in small intestinal inflammation, mitochondrial damage, autophagy, and apoptosis.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina , Beclina-1 , Nutrición Enteral , Lesión Pulmonar , Proteína Adaptadora de Señalización NOD2 , Transportador de Péptidos 1 , Ratas Sprague-Dawley , Transducción de Señal , Animales , Transportador de Péptidos 1/metabolismo , Transportador de Péptidos 1/genética , Ratas , Beclina-1/metabolismo , Beclina-1/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar/metabolismo , Masculino , Acetilmuramil-Alanil-Isoglutamina/farmacología , Nutrición Enteral/métodos , Apoptosis/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Autofagia/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Inflamación/metabolismo
2.
Nutrients ; 16(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39203856

RESUMEN

PepT1, a proton-coupled oligopeptide transporter, is crucial for intestinal homeostasis. It is mainly expressed in small intestine enterocytes, facilitating the absorption of di/tri-peptides from dietary proteins. In the colon, PepT1 expression is minimal to prevent excessive responses to proinflammatory peptides from the gut microbiota. However, increased colonic PepT1 is linked to chronic inflammatory diseases and colitis-associated cancer. Despite promising results from animal studies on the benefits of extracellular vesicles (EVs) from beneficial gut commensals in treating IBD, applying probiotic EVs as a postbiotic strategy in humans requires a thorough understanding of their mechanisms. Here, we investigate the potential of EVs of the probiotic Nissle 1917 (EcN) and the commensal EcoR12 in preventing altered PepT1 expression under inflammatory conditions, using an interleukin (IL)-1-induced inflammation model in Caco-2 cells. The effects are evaluated by analyzing the expression of PepT1 (mRNA and protein) and miR-193a-3p and miR-92b, which regulate, respectively, PepT1 mRNA translation and degradation. The influence of microbiota EVs on PepT1 expression is also analyzed in the presence of bacterial peptides that are natural substrates of colonic PepT1 to clarify how the regulatory mechanisms function under both physiological and pathological conditions. The main finding is that EcN EVs significantly decreases PepT1 protein via upregulation of miR-193a-3p. Importantly, this regulatory effect is strain-specific and only activates in cells exposed to IL-1ß, suggesting that EcN EVs does not control PepT1 expression under basal conditions but can play a pivotal role in response to inflammation as a stressor. By this mechanism, EcN EVs may reduce inflammation in response to microbiota in chronic intestinal disorders by limiting the uptake of bacterial proinflammatory peptides.


Asunto(s)
Escherichia coli , Vesículas Extracelulares , Interleucina-1beta , MicroARNs , Transportador de Péptidos 1 , Probióticos , Regulación hacia Arriba , Humanos , Transportador de Péptidos 1/metabolismo , Probióticos/farmacología , MicroARNs/metabolismo , Células CACO-2 , Vesículas Extracelulares/metabolismo , Interleucina-1beta/metabolismo , Microbioma Gastrointestinal , Inflamación/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999989

RESUMEN

Cefaclor is a substrate of human-peptide-transporter-1 (PEPT1), and the impact of inter-individual pharmacokinetic variation due to genetic polymorphisms of solute-carrier-family-15-member-1 (SLC15A1) has been a topic of great debate. The main objective of this study was to analyze and interpret cefaclor pharmacokinetic variations according to genetic polymorphisms in SLC15A1 exons 5 and 16. The previous cefaclor bioequivalence results were integrated with additional SLC15A1 exons 5 and 16 genotyping results. An analysis of the structure-based functional impact of SLC15A1 exons 5 and 16 genetic polymorphisms was recently performed using a PEPT1 molecular modeling approach. In cefaclor pharmacokinetic analysis results according to SLC15A1 exons 5 and 16 genetic polymorphisms, no significant differences were identified between genotype groups. Furthermore, in the population pharmacokinetic modeling, genetic polymorphisms in SLC15A1 exons 5 and 16 were not established as effective covariates. PEPT1 molecular modeling results also confirmed that SLC15A1 exons 5 and 16 genetic polymorphisms did not have a significant effect on substrate interaction with cefaclor and did not have a major effect in terms of structural stability. This was determined by comprehensively considering the insignificant change in energy values related to cefaclor docking due to point mutations in SLC15A1 exons 5 and 16, the structural change in conformations confirmed to be less than 0.05 Å, and the relative stabilization of molecular dynamic simulation energy values. As a result, molecular structure-based analysis recently suggested that SLC15A1 exons 5 and 16 genetic polymorphisms of PEPT1 were limited to being the main focus in interpreting the pharmacokinetic diversity of cefaclor.


Asunto(s)
Cefaclor , Transportador de Péptidos 1 , Humanos , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Cefaclor/farmacocinética , Exones/genética , Genotipo , Polimorfismo Genético , Antibacterianos/farmacocinética , Polimorfismo de Nucleótido Simple , Modelos Moleculares
4.
J Agric Food Chem ; 72(22): 12719-12724, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789103

RESUMEN

Lactononadecapeptide (LNDP; NIPPLTQTPVVVPPFLQPE), a casein-derived peptide comprising 19 residues, is known for its capacity to enhance cognitive function. This study aimed to explore the transepithelial transport and stability of LNDP. Results showed that LNDP retained over 90% stability after 2 h of treatment with gastrointestinal enzymes. The stability of LNDP on Caco-2 cell monolayers ranged from 93.4% ± 0.9% to 101.1% ± 1.2% over a period of 15-60 min, with no significant differences at each time point. The permeability of LNDP across an artificial lipid membrane was very low with the effective permeability of 3.6 × 10-11 cm/s. The Caco-2 assay demonstrated that LNDP could traverse the intestinal epithelium, with an apparent permeability of 1.22 × 10-6 cm/s. Its transport was significantly inhibited to 67.9% ± 5.0% of the control by Gly-Pro, a competitor of peptide transporter 1 (PEPT1). Furthermore, PEPT1 knockdown using siRNA significantly inhibited LNDP transport by 77.6% ± 1.9% in Caco-2 cell monolayers. The LNDP uptake in PEPT1-expressing HEK293 cells was significantly higher (54.5% ± 14.6%) than that in mock cells. These findings suggest that PEPT1 plays a crucial role in LNDP transport, and LNDP exhibits good resistance to gastrointestinal enzymes.


Asunto(s)
Caseínas , Humanos , Células CACO-2 , Transporte Biológico , Caseínas/metabolismo , Caseínas/química , Caseínas/genética , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Mucosa Intestinal/metabolismo , Estabilidad de Enzimas , Péptidos/química , Péptidos/metabolismo
5.
Adv Sci (Weinh) ; 11(24): e2306671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639383

RESUMEN

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular , Dipéptidos , Neoplasias Hepáticas , Transportador de Péptidos 1 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Dipéptidos/metabolismo , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Desnudos , Metástasis de la Neoplasia , Transportador de Péptidos 1/metabolismo , Transportador de Péptidos 1/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Bioorg Med Chem Lett ; 96: 129502, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37806498

RESUMEN

Camptothecin (CPT) and its derivatives are potent candidates for cancer treatment. However, the clinical applications are largely restricted by non-selectivity and severe toxicities. The peptide transporter 1 (PEPT1), which is highly expressed in human intestines, has been found to be overexpressed in several cancer cells. This discovery suggests that PEPT1 has the potential to serve as a therapeutic target for both improving bioavailability and cancer-targeting treatment. Therefore, a prodrug approach for CPT targeting at PEPT1 highly expressed cancer cells was adopted in the present study. Eighteen CPT prodrugs, its peptidic conjugates, were synthesized and the structures were confirmed by NMR and HRMS. The protein expression profiles of PEPT1 in different cell lines were performed using immunofluorescence assay and western blotting analysis. The cytotoxicity of CPT prodrugs and their uptake via competition with Gly-Sar, a typical substrate of PEPT1, were evaluated in both PEPT1-overexpressed and under expressed cells. The results demonstrated that most CPT prodrugs significantly impaired Gly-Sar uptake, suggesting a higher affinity of CPT-peptidic conjugates for PEPT1 and PEPT1 overexpression cells. In addition, these prodrugs demonstrated a higher capability for inhibiting cell growth in PEPT1 highly-expressed cancer cells compared to PEPT1 under expressed cells. These results indicated that this peptidic prodrug strategy might offer great potential for improved tumor selectivity and chemotherapeutic efficacy of CPT.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/química , Transportador de Péptidos 1/metabolismo , Línea Celular , Transporte Biológico , Camptotecina/farmacología , Camptotecina/química
7.
Biopharm Drug Dispos ; 44(5): 372-379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507848

RESUMEN

Irinotecan causes severe gastrointestinal damage, which may affect the expression of intestinal transporters. However, neither the expression of peptide transporter 1 (Pept1) nor the pharmacokinetics of Pept1 substrate drugs has been investigated under irinotecan-induced gastrointestinal damage. Therefore, the present study quantitatively investigated the effects of irinotecan-induced gastrointestinal damage on the intestinal expression of Pept1 and absorption of cephalexin (CEX), a typical Pept1 substrate, in rats. Irinotecan was administered intravenously to rats for 4 days to induce gastrointestinal damage. The expression of Pept1 mRNA and the Pept1 protein in the upper, middle, and lower segments of the small intestine of irinotecan-treated rats was assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The pharmacokinetic profile of CEX was examined after its oral or intravenous administration (10 mg/kg). In irinotecan-treated rats, ∼2-fold increases in Pept1 protein levels were observed in all three segments, whereas mRNA levels remained unchanged. The oral bioavailability of CEX significantly decreased to 76% of that in control rats. The decrease in passive diffusion caused by intestinal damage may have overcome the increase in Pept1-mediated uptake. In conclusion, irinotecan may decrease the intestinal absorption of Pept1 substrate drugs; however, it increased the expression of intestinal Pept1.


Asunto(s)
Cefalexina , Simportadores , Ratas , Animales , Cefalexina/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Irinotecán , Simportadores/metabolismo , ARN Mensajero/metabolismo , Absorción Intestinal
8.
Biosci Biotechnol Biochem ; 87(2): 197-207, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36521839

RESUMEN

The protamine-derived peptide arginine-proline-arginine (RPR) can ameliorate lifestyle-related diseases such as obesity and hypercholesterolemia. Thus, we hypothesized that the hypolipidemic activity of RPR could attenuate events leading to non-alcoholic fatty liver disease. Addition of 2 m m oleic acid (OA) to the culture medium induced fatty liver conditions in HepG2 cells. The OA + RPR group showed significantly decreased cellular or medium triglyceride (TG) level compared with the OA group. Stearoyl-CoA desaturase-1 (SCD1) or sterol regulatory element-binding protein 1 (SREBP1) protein level was significantly lower in the OA + RPR group than in the OA group. In the R + P + R amino acid mixture-treated group, the TG level was not significantly different from that in the OA-treated group. The OA + RP- or OA + PR-treated groups showed significantly decreased cellular TG level compared with the OA group. Moreover, the effect of RPR disappeared when the peptide transporter 1 (PepT1) was knocked down with a siRNA. Collectively, our results demonstrated that RPR effectively ameliorated hepatic steatosis in HepG2 cells via the PepT1 pathway.


Asunto(s)
Lipogénesis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ácido Oléico/farmacología , Células Hep G2 , Transportador de Péptidos 1/metabolismo , Protaminas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Péptidos/metabolismo , Prolina/metabolismo
9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(11): 1132-1137, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36567554

RESUMEN

OBJECTIVE: To investigate the role of cholinergic anti-inflammatory pathway in the regulation of peptide transporter 1 (PepT1) expression in small intestinal epithelium of septic rats by Ghrelin. METHODS: One hundred adult male Sprague-Dawley (SD) rats were randomly divided into sham operation group, sepsis group, sepsis+vagotomy group, sepsis+Ghrelin group, and sepsis+vagotomy+Ghrelin group, with 20 rats in each group. In the sham operation group, the cecum was separated after laparotomy, without ligation and perforation. In the sepsis group, the rats received cecal ligation puncture (CLP). In the sepsis+vagotomy group, the rats received CLP and vagotomy after laparotomy. In the sepsis+Ghrelin group, 100 µmol/L Ghrelin was intravenously injected after CLP immediately. The rats in the sepsis+vagotomy+Ghrelin group received CLP and vagotomy at the same time, then the Ghrelin was intravenously injected immediately with the same dose as the sepsis+Ghrelin group. Ten rats in each group were taken to observe their survival within 7 days. The remaining 10 rats were sacrificed 20 hours after the operation to obtain venous blood and small intestinal tissue. The condition of the abdominal intestine was observed. The injury of intestinal epithelial cells was observed with transmission electron microscopy. The contents of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in serum and small intestinal tissue were detected by enzyme-linked immunosorbent assay (ELISA). The brush border membrane vesicle (BBMV) was prepared, the levels of mRNA and protein expression of PepT1 in the small intestinal epithelium were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS: All rats in the sham operation group survived at 7 days after operation. The 7-day cumulative survival rate of rats in the sepsis group was significantly lower than that in the sham operation group (20% vs. 100%, P < 0.05). The cumulative survival rate of rats after Ghrelin intervention was improved (compared with sepsis group: 40% vs. 20%, P < 0.05), but the protective effect of Ghrelin was weakened after vagotomy (compared with sepsis+Ghrelin group: 10% vs. 40%, P < 0.05). Compared with the sham operation group, in the sepsis group, the small intestine and cecum were dull red, the intestinal tubules were swollen and filled with gas, the intestinal epithelial cells were seriously injured under transmission electron microscopy, the levels of TNF-α and IL-1ß in serum and small intestinal were significantly increased, and the expression levels of PepT1 mRNA and protein in the small intestinal epithelium were significantly decreased. It indicated that the sepsis rat model was successfully prepared. After vagotomy, the intestinal swelling and gas accumulation became worse in septic rats, leading to the death of all rats. Compared with the sepsis group, the abdominal situation in the sepsis+Ghrelin group was improved, the injury of intestinal epithelial cells was alleviated, the serum and small intestinal TNF-α and IL-1ß were significantly decreased [serum TNF-α (ng/L): 253.27±23.32 vs. 287.90±19.48, small intestinal TNF-α (ng/L): 95.27±11.47 vs. 153.89±18.15, serum IL-1ß (ng/L): 39.16±4.47 vs. 54.26±7.27, small intestinal IL-1ß (ng/L): 28.47±4.13 vs. 42.26±2.59, all P < 0.05], and the expressions of PepT1 mRNA and protein in the small intestinal epithelium were significantly increased [PepT1 mRNA (2-ΔΔCt): 0.66±0.05 vs. 0.53±0.06, PepT1 protein (PepT1/GAPDH): 0.80±0.04 vs. 0.60±0.05, both P < 0.05]. Compared with the sepsis+Ghrelin group, after vagotomy in the sepsis+vagotomy+Ghrelin group, the effect of Ghrelin on reducing the release of inflammatory factors in sepsis rats was significantly reduced [serum TNF-α (ng/L): 276.58±19.88 vs. 253.27±23.32, small intestinal TNF-α (ng/L): 144.28±12.99 vs. 95.27±11.47, serum IL-1ß (ng/L): 48.15±3.21 vs. 39.16±4.47, small intestinal IL-1ß (ng/L): 38.75±4.49 vs. 28.47±4.13, all P < 0.05], the up-regulated effect on the expression of PepT1 in small intestinal epithelium was lost [PepT1 mRNA (2-ΔΔCt): 0.58±0.03 vs. 0.66±0.05, PepT1 protein (PepT1/GAPDH): 0.70±0.02 vs. 0.80±0.04, both P < 0.05], and the injury of small intestinal epithelial cells was worse. CONCLUSIONS: Ghrelin plays a protective role in sepsis by promoting cholinergic neurons to inhibit the release of inflammatory factors, thereby promoting the transcription and translation of PepT1.


Asunto(s)
Neuronas Colinérgicas , Ghrelina , Intestino Delgado , Neuroinmunomodulación , Transportador de Péptidos 1 , Sepsis , Animales , Masculino , Ratas , Ghrelina/metabolismo , Mucosa Intestinal/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Intestino Delgado/metabolismo , Neuronas Colinérgicas/metabolismo
10.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36047828

RESUMEN

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Asunto(s)
Grano Comestible , Glucosa , Transportadores de Nitrato , Transportador de Péptidos 1 , Proteínas de Plantas , Sacarosa , Zea mays , Humanos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Glucosa/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Transporte Biológico
11.
Biomed Res Int ; 2022: 2988159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124064

RESUMEN

Bladder cancer (BCa) is an increasingly severe clinical and public health issue. Therefore, we aim to investigate BCa susceptibility loci in the Chinese population. In this study, 487 BCa patients and 563 controls were recruited from the First Affiliated Hospital of China Medical University from July 2015 to September 2020. A total of ten single-nucleotide polymorphisms (SNPs) in solute carrier family 15 member 1 (SLC15A1), CWC27 spliceosome associated cyclophilin (CWC27), or UDP glucuronosyltransferase family 1 member A3 (UGT1A3) genes were genotyped. The associations between the candidate SNPs and BCa were analyzed using genotype and haplotype analysis. The results demonstrated that Rs4646227 of SLC15A1 has a significant association with BCa. The patients with CG (OR =2.513, p < 0.05) and GG (OR =2.859, p < 0.05) genotypes had an increasing risk of BCa compared with the CC genotype. For the CWC27 gene, genotypic frequency analysis revealed that the GT or TT genotype of rs2042329 and the CT or TT genotype of rs1870437 were more frequent in BCa patients than those in the control group, indicating that these genotypes were associated with a higher risk of BCa (all p < 0.05). Haplotypes of SLC15A1, UGT1A3, and CWC27 genes found that the C-C-C haplotype of SLC15A1 was associated with a lower risk of BCa while the C-G-C haplotype was associated with a higher risk. For the UGT1A3 gene, a moderate protective effect was observed with the most frequent T-T-C haplotype, and for the CWC27 gene, most of the haplotypes showed no association with BCa, except the G-G-C-T haplotype (order of SNPs: rs2042329-rs7735338-rs1870437-rs2278351, OR =0.81, p =0.038). In sum, this study indicated that rs2042329 and rs1870437 in the CWC27 gene and rs4646227 in the SLC15A1 gene are independent indicators for BCa risk in Chinese people. Further large-scale studies are required to validate these findings. Also, this study provided the theoretical basis for developing new therapeutic drug targeting of BCa.


Asunto(s)
Glucuronosiltransferasa , Transportador de Péptidos 1 , Neoplasias de la Vejiga Urinaria , Humanos , Ciclofilinas/genética , Predisposición Genética a la Enfermedad/genética , Glucuronosiltransferasa/genética , Transportador de Péptidos 1/genética , Neoplasias de la Vejiga Urinaria/genética
12.
Structure ; 30(7): 1035-1041.e3, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580608

RESUMEN

Mammalian peptide transporters, PepT1 and PepT2, mediate uptake of small peptides and are essential for their absorption. PepT also mediates absorption of many drugs and prodrugs to enhance their bioavailability. PepT has twelve transmembrane (TM) helices that fold into an N-terminal domain (NTD, TM1-6) and a C-terminal domain (CTD, TM7-12) and has a large extracellular domain (ECD) between TM9-10. It is well recognized that peptide transport requires movements of the NTD and CTD, but the role of the ECD in PepT1 remains unclear. Here we report the structure of horse PepT1 encircled in lipid nanodiscs and captured in the inward-open apo conformation. The structure shows that the ECD bridges the NTD and CTD by interacting with TM1. Deletion of ECD or mutations to the ECD-TM1 interface impairs the transport activity. These results demonstrate an important role of ECD in PepT1 and enhance our understanding of the transport mechanism in PepT1.


Asunto(s)
Simportadores , Animales , Transporte Biológico , Caballos , Mamíferos/metabolismo , Conformación Molecular , Transportador de Péptidos 1/genética , Péptidos , Simportadores/genética , Simportadores/metabolismo
13.
Curr Med Chem ; 29(9): 1596-1605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546503

RESUMEN

PEPT1 is a vital member of the proton-dependent oligopeptide transporters family (POTs). Many studies have confirmed that PEPT1 plays a critical role in the absorption of dipeptides, tripeptides, and pseudopeptides in the intestinal tract. In recent years, several studies have found that PEPT1 is highly expressed in malignant tumor tissues and cells. The abnormal expression of PEPT1 in tumors may be closely related to the progress of tumors, and hence, could be considered as a potential molecular biomarker for the diagnosis, treatment, and prognosis in malignant tumors. Furthermore, PEPT1 can be used to mediate the targeted delivery of anti-tumor drugs. Herein, the expression, regulation, and role of PEPT1 in tumors in recent years have been reviewed.


Asunto(s)
Proteínas de Transporte de Membrana , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Oligopéptidos , Transportador de Péptidos 1/metabolismo , Protones
14.
Amino Acids ; 54(7): 1001-1011, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35386060

RESUMEN

Hypertension is a major risk factor for kidney and cardiovascular disease. The treatment of hypertensive individuals by selected ACE inhibitors and certain di-and tripeptides halts the progression of renal deterioration and extends life-span. Renal reabsorption of these low molecular weight substrates are mediated by the PEPT1 and PEPT2 cotransporters. This study aims to investigate whether hypertension and ageing affects renal PEPT cotransporters at gene, protein expression and distribution as well as function in the superficial cortex and the outer medulla of the kidney. Membrane vesicles from the brush border (BBMV) and outer medulla (OMMV) were isolated from the kidneys of young Wistar Kyoto (Y-WKY), young spontaneously hypertensive (Y-SHR), and middle aged SHR (M-SHR) rats. Transport activity was measured using the substrate, ß-Ala-Lys (AMCA). Gene expression levels of PEPT genes were assessed with qRT-PCR while renal localisation of PEPT cotransporters was examined by immunohistochemistry with Western Blot validation. The Km and Vmax of renal PEPT1 were decreased significantly in SHR compared to WKY BBMV, whilst the Vmax of PEPT2 showed differences between SHR and WKY. By contrast to the reported cortical distribution of PEPT1, PEPT1-staining was detected in the outer medulla, whilst PEPT2 was expressed primarily in the cortex of all SHR; PEPT1 was significantly upregulated in the cortex of Y-SHR. These outcomes are indicative of a redistribution of PEPT1 and PEPT2 in the kidney proximal tubule under hypertensive conditions that has potential repercussions for nutrient handling and the therapeutic use of ACE inhibitors in hypertensive individuals.


Asunto(s)
Hipertensión , Simportadores , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Péptidos/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Roedores/metabolismo , Simportadores/genética , Simportadores/metabolismo
15.
PLoS One ; 17(2): e0263692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35226682

RESUMEN

Pharmaceutical excipients are the basic materials and important components of pharmaceutical preparations, and play an important role in improving the efficacy of drugs and reducing adverse reactions. Therefore, selecting suitable excipients for dosage form is an important step in formulation development. An increasing number of studies have revealed that the traditionally regarded "inert" excipients can, however, influence the bioavailability of drugs. Moreover, these effects on the bioavailability of drugs caused by pharmaceutical excipients may differ in between males and females. In this study, the in situ effect of the widely-used pharmaceutical excipient Cremophor RH 40 spanning from 0.001% to 0.1% on the intestinal absorption of ampicillin in male and female rats using closed-loop models was investigated. Cremophor RH 40 ranging from 0.03% to 0.07% increased the absorption of ampicillin in females, however, was decreased in male rats. The mechanism of such an effect on drug absorption is suggested to be due to the interaction between Cremophor RH 40 and two main membrane transporters P-gp and PepT1. Cremophor RH 40 altered the PepT1 protein content in a sex-dependent manner, showing an increase in female rats but a decrease in males. No modification on the PepT1 mRNA abundance was found with Cremophor RH 40, indicating that the excipient may regulate the protein recruitment of the plasma membrane from the preformed cytoplasm pool to alter the PepT1 function. This influence, however, may differ between males and females. As such, the study herein shows that supposedly inert excipient Cremophor RH 40 can influence membrane fluidity, uptake and efflux transporters in a sex- and concentration-dependent manner. These findings, therefore, highlight the need for sex-specific studies in the application of solubilizing excipients in drug formulation development.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ampicilina , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Transportador de Péptidos 1/metabolismo , Polietilenglicoles , Caracteres Sexuales , Ampicilina/farmacocinética , Ampicilina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Ratas Wistar
16.
Acta Biomater ; 141: 164-177, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032720

RESUMEN

Chitosan oligosaccharide-stearic acid-Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine (CSO-SA-VVV5:2/DOPE) nanomicelles were rationally designed and developed for topical drug delivery to the posterior segment of the eye. The new ligand of VVV selected by computer-aided design exhibited better peptide transporter 1 active targeting in human conjunctival epithelial cells (HConEpiC) than other ligands mentioned in this project. The classic membrane fusion lipid of DOPE was indicated to facilitate the stability and lysosomal escape of the mixed nanomicelles. Förster Resonance Energy Transfer was used to investigate the integrity of mixed nanomicelles in HConEpiC after passing through cell monolayer as well as in ocular tissues after topical administration. The results indicated that mixed nanomicelles could keep more intact micellar structure than CSO-SA nanomicelles in transit. These findings suggested that CSO-SA-VVV5:2/DOPE nanomicelles could overcome multiple ocular barriers and offer an efficient strategy for drug delivery from ocular surface to the posterior segment of the eye. STATEMENT OF SIGNIFICANCE: Ocular drug delivery systems face multiple physiological barriers in delivering drugs to the posterior segment of the eye by topical administration. In this study, new ligand of Valyl-Valyl-Valine was selected with computer-aided design for active targeting to peptide transporter 1 and anchored onto nanomicelles. Chitosan oligosaccharide-stearic acid- Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine nanomicelles were rational designed. The mixed nanomicelles exhibited better active targeting ability and lysosomal escape. Nanomicellar integrity analysis with fluorescence resonance energy transfer technique demonstrated that mixed nanomicelles significantly enhanced cell permeability and exhibited more intact micellar structure in transit. These results suggested that the mixed nanomicelle eye drops have the potential to deliver drugs from ocular surface to the posterior segment of the eye.


Asunto(s)
Quitosano , Quitosano/química , Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Micelas , Oligosacáridos , Soluciones Oftálmicas/farmacología , Transportador de Péptidos 1
17.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 24-32, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33834547

RESUMEN

Intestinal absorption of peptides is vital for the overall health and productivity of dairy cows. This study investigated the regulation, uptake and transport of dipeptides in bovine intestinal epithelial cells (BIECs). We also evaluated the effects of time, pH, concentration of the dipeptides, temperature, presence of diethylpyrocarbonate (DEPC)-an inhibitor of PepT1, and other dipeptides (Met-Met, Lys-Lys or Met-Lys), on the uptake and transport of Gly-Sar-FITC, which was a common fluorophore-labelled dipeptide. Under controlled experiments, BIECs were treated with 25 µM LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) and 25 µM Perifosine (a protein kinase B (AKT) inhibitor). The subsequent expression of PepT1 in the BIECs was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. It was found that the uptake and transport of Gly-Sar-FITC were significant high at 37℃ than that at 4℃. The optimal pH for transport and uptake of Gly-Sar-FITC was 6.0-6.5, whereas the two properties decreased significantly in the presence of DEPC, Met-Met, Lys-Lys and Met-Lys (p < 0.05). The apical-to-basolateral transport was also found to be significantly higher than the reverse transport (p < 0.05). PI3K and AKT inhibitors were found to significantly suppress the expression of PepT1, thus impairing uptake and transport of Gly-Sar-FITC. Findings of this study thus suggest that the uptake and transport of Gly-Sar-FITC in BIECs are mediated by PepT1, and the PI3K/AKT signalling pathway regulates the absorption of small peptides.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Simportadores , Animales , Transporte Biológico , Células CACO-2 , Bovinos , Dipéptidos , Células Epiteliales/metabolismo , Femenino , Humanos , Transportador de Péptidos 1 , Simportadores/genética , Simportadores/metabolismo
18.
J Med Chem ; 65(6): 4565-4577, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34842428

RESUMEN

The naturally occurring linear dipeptide JBP923 (trans-4-l-Hyp-l-Ser, HS-tLL) with anti-inflammatory effects showed potential for the treatment of inflammatory bowel disease (IBD). However, colon-specific delivery after oral administration is still a challenge because its absorption is mediated by oligopeptide transporter 1 (PEPT1) in the upper small intestine and because of its instability in the gastrointestinal tract. Therefore, we aimed to enhance the colon-targeting efficiency by modulating HS-tLL chirality to synthesize eight enantiomers. Among these enantiomers, trans-4-d-Hyp-d-Ser, cis-4-l-Hyp-d-Ser, cis-4-d-Hyp-l-Ser, and cis-4-d-Hyp-d-Ser did not work as substrates of PEPT1 and were stable in the gastrointestinal tract, resulting in enhanced colonic accumulation through the paracellular pathway due to the loose tight junctions in IBD. Interestingly, cis-4-d-Hyp-d-Ser exerted the most potent therapeutic effect on IBD. Our findings revealed the impact of chirality on the colonic accumulation of the linear dipeptide, providing strategies for the colon-targeted delivery of the linear dipeptide for the treatment of IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Transportador de Péptidos 1 , Simportadores , Colon , Dipéptidos/química , Dipéptidos/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Transportador de Péptidos 1/química , Serina/farmacología , Simportadores/metabolismo
19.
Protein Expr Purif ; 190: 105990, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34637915

RESUMEN

The human peptide transporter hPEPT1 (SLC15A1) is responsible for uptake of dietary di- and tripeptides and a number of drugs from the small intestine by utilizing the proton electrochemical gradient, and hence an important target for peptide-like drug design and drug delivery. hPEPT1 belongs to the ubiquitous major facilitator superfamily that all contain a 12TM core structure, with global conformational changes occurring during the transport cycle. Several bacterial homologues of these transporters have been characterized, providing valuable insight into the transport mechanism of this family. Here we report the overexpression and purification of recombinant hPEPT1 in a detergent-solubilized state. Thermostability profiling of hPEPT1 at different pH values revealed that hPEPT1 is more stable at pH 6 as compared to pH 7 and 8. Micro-scale thermophoresis (MST) confirmed that the purified hPEPT1 was able to bind di- and tripeptides respectively. To assess the in-solution oligomeric state of hPEPT1, negative stain electron microscopy was performed, demonstrating a predominantly monomeric state.


Asunto(s)
Expresión Génica , Transportador de Péptidos 1 , Calor , Humanos , Concentración de Iones de Hidrógeno , Transportador de Péptidos 1/biosíntesis , Transportador de Péptidos 1/química , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/aislamiento & purificación , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
20.
Toxins (Basel) ; 13(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34941711

RESUMEN

Cardiovascular disease (CVD) is the leading cause of mortality in diabetes mellitus (DM). Immunomodulatory dysfunction is a primary feature of DM, and the emergence of chronic kidney disease (CKD) in DM abruptly increases CVD mortality compared with DM alone. Endothelial injury and the accumulation of uremic toxins in the blood of DM/CKD patients are known mechanisms for the pathogenesis of CVD. However, the molecular factors that cause this disproportional increase in CVD in the DM/CKD population are still unknown. Since long non-protein-coding RNAs (lncRNAs) play an important role in regulating multiple cellular functions, we used human endothelial cells treated with high glucose to mimic DM and with the uremic toxin indoxyl sulfate (IS) to mimic the endothelial injury associated with CKD. Differentially expressed lncRNAs in these conditions were analyzed by RNA sequencing. We discovered that lnc-SLC15A1-1 expression was significantly increased upon IS treatment in comparison with high glucose alone, and then cascaded the signal of chemokines CXCL10 and CXCL8 via sponging miR-27b, miR-297, and miR-150b. This novel pathway might be responsible for the endothelial inflammation implicated in augmenting CVD in DM/CKD and could be a therapeutic target with future clinical applications.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Indicán/genética , Indicán/metabolismo , MicroARNs/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Toxinas Biológicas/toxicidad , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/mortalidad , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA