Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 967, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122870

RESUMEN

The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.


Asunto(s)
Células Madre Hematopoyéticas , Mitocondrias , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Mitocondrias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Hematopoyesis , Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/genética , Diferenciación Celular , Fosforilación Oxidativa , Femenino , Ratones Endogámicos C57BL
2.
Int Immunopharmacol ; 138: 112599, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38959543

RESUMEN

BACKGROUND: Prostate cancer remains a prominent challenge in oncology, with advanced stages showing poor prognosis. The tumor microenvironment (TME), and particularly tumor-associated macrophages (TAMs), plays a crucial role in disease progression. This study explores the single-cell transcriptomics of prostate cancer, determines macrophage heterogeneity, identifies prognostic gene markers, and assesses the role of PPIF in TAMs. METHODS: Single-cell RNA sequencing data from the GEO database (GSE176031) and transcriptome data from the TCGA were processed to characterize cell populations and identify prognostic genes in prostate cancer. Macrophage subpopulations were examined through clustering, followed by gene set scoring based on migration, activation, and proliferation. PPIF expression in macrophages was investigated using multiplex immunofluorescence staining on matched prostate cancer and adjacent non-tumoral tissues. RESULTS: The single-cell analysis identified 9,178 cells, categorized into 10 principal cell types, with macrophages constituting a significant part of the immune microenvironment. Four macrophage subgroups demonstrated distinct functional pathways: phagocytic, immune-regulatory, and proliferative. A total of 39 genes correlated with prostate cancer prognosis were identified, of which 10 carried the most significant prognostic information. Peptidylprolyl Isomerase F (PPIF) expression was significantly higher in TAMs from tumor tissue than normal tissue, indicating its potential regulatory role in the immune microenvironment. CONCLUSION: The intricate cellular architecture of the prostate cancer TME has been elucidated, with a focus on macrophage heterogeneity and functional specialization. Prognostic genes, including PPIF, were associated with survival outcomes, providing potential therapeutic targets. PPIF's prominent expression in TAMs may serve as a lever in cancer progression, warranting further investigation as a biomarker and a molecule of interest for therapeutic targeting within the prostate cancer milieu.


Asunto(s)
Peptidil-Prolil Isomerasa F , Neoplasias de la Próstata , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Peptidil-Prolil Isomerasa F/genética , Peptidil-Prolil Isomerasa F/metabolismo
3.
Cell Stem Cell ; 31(9): 1359-1375.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38955185

RESUMEN

Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.


Asunto(s)
Células Madre Hematopoyéticas , Ratones Noqueados , Mitocondrias , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Células Madre Hematopoyéticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Ratones , Mitocondrias/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Ciclofilinas/metabolismo
4.
Atherosclerosis ; 396: 118524, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972156

RESUMEN

BACKGROUND AND AIMS: In advanced atherosclerotic lesions, macrophage deaths result in necrotic core formation and plaque vulnerability. Cyclophilin D (CypD) is a mitochondria-specific cyclophilin involved in the process of cell death after organ ischemia-reperfusion. However, the role of CypD in atherosclerosis, especially in necrotic core formation, is unknown. Therefore, this experiment aims to clarify the role of CypD in necrotic core formation. METHODS: To clarify the specific role of CypD, encoded by Ppif in mice, apolipoprotein-E/CypD-double knockout (Apoe-/-Ppif-/-) mice were generated. These mice were fed a high-fat diet containing 0.15 % cholesterol for 24 weeks to accelerate atherosclerotic lesion development. RESULTS: Deletion of CypD decreased the necrotic core size, accompanied by a reduction of macrophage apoptosis compared to control Apoe-/- mice. In RAW264.7 cells, siRNA-mediated knockdown of CypD attenuated the release of cytochrome c from the mitochondria to the cytosol induced by endoplasmic reticulum stress inducer thapsigargin. In addition, necroptosis, induced by TNF-α and caspase inhibitor, was attenuated by knockdown of CypD. Ly-6Chigh inflammatory monocytes in peripheral blood leukocytes and mRNA expression of Il1b in the aorta were decreased by deletion of CypD. In contrast, siRNA-mediated knockdown of CypD did not significantly decrease Il1b nor Ccl2 mRNA expression in RAW264.7 cells treated with LPS and IFN-γ, suggesting that inhibition of inflammation in vivo is likely due to decreased cell death in the atherosclerotic lesions rather than a direct action of CypD deletion on the macrophage. CONCLUSIONS: These results indicate that CypD induces macrophage death and mediates necrotic core formation in advanced atherosclerotic lesions. CypD could be a novel therapeutic target for treating atherosclerotic vascular diseases.


Asunto(s)
Aterosclerosis , Macrófagos , Mitocondrias , Necrosis , Peptidil-Prolil Isomerasa F , Placa Aterosclerótica , Animales , Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/genética , Macrófagos/metabolismo , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Células RAW 264.7 , Modelos Animales de Enfermedad , Apoptosis , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Necroptosis , Masculino , Ratones Noqueados , Apolipoproteínas E/genética , Apolipoproteínas E/deficiencia , Ciclofilinas/metabolismo , Ciclofilinas/genética , Ciclofilinas/deficiencia , Dieta Alta en Grasa , Interleucina-1beta/metabolismo , Antígenos Ly
5.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564292

RESUMEN

Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.


Asunto(s)
Colágeno , Fibroblastos , Ratones Noqueados , Peptidil-Prolil Isomerasa F , Piel , Cicatrización de Heridas , Animales , Femenino , Humanos , Masculino , Ratones , Movimiento Celular , Proliferación Celular , Colágeno/metabolismo , Ciclofilinas/metabolismo , Ciclofilinas/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Tejido de Granulación/metabolismo , Tejido de Granulación/patología , Queratinocitos/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/genética , Piel/metabolismo , Piel/patología , Porcinos , Cicatrización de Heridas/fisiología
6.
Schizophr Bull ; 50(5): 1197-1207, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412332

RESUMEN

BACKGROUND AND HYPOTHESIS: Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN: Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS: In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS: Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.


Asunto(s)
Interneuronas , Parvalbúminas , Peptidil-Prolil Isomerasa F , Esquizofrenia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ciclofilinas/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Peptidil-Prolil Isomerasa D , Peptidil-Prolil Isomerasa F/metabolismo , Corteza Prefrontal/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patología
7.
Reprod Biol Endocrinol ; 22(1): 15, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254112

RESUMEN

BACKGROUND: Cyclophilin D (CypD) negatively regulates ATP production by opening of the mitochondrial permeability transition pore. This study aimed to understand the role of CypD in sperm motility regulation. METHODS: Changes in CypD during sperm capacitation and its interaction with glycogen synthase kinase 3α (GSK3α), a key kinase regulating sperm motility, were examined in mouse spermatozoa. The effects of CypD inhibitor cyclosporin A (CsA) and GSK3 inhibitor 6-bromo-indirubin-3'-oxime (BIO) on sperm motility, p-GSK3α(Ser21), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production were examined. The effect of proteasome inhibitor MG115 on the cellular levels of CypD was examined. RESULTS: In cauda epididymal spermatozoa, GSK3α was found in both cytosolic and mitochondrial fractions whereas CypD was primarily found in the mitochondrial fraction together with ATP synthase F1 subunit alpha (ATP5A), a mitochondrial marker. GSK3α and CypD were co-localized in the sperm midpiece. Interaction between GSK3α and CypD was identified in co-immunoprecipitation. CsA, a CypD inhibitor, significantly increased sperm motility, tyrosine phosphorylation, mPTP closing, MMP, and ATP levels in spermatozoa, suggesting that CypD acts as a negative regulator of sperm function. Under capacitation condition, both GSK3α and CypD were decreased in spermatozoa but ATP5A was not. The GSK3 inhibitor BIO markedly increased p-GSK3α(Ser21) and decreased CypD but significantly increased mPTP closing, MMP, ATP production, and motility of spermatozoa. This suggests that inhibitory phosphorylation of GSK3α is coupled with degradation of CypD, potentiating the mitochondrial function. Degradation of CypD was attenuated by MG115, indicative of involvement of the ubiquitin proteasome system. CONCLUSIONS: During sperm capacitation, CypD act as a downstream target of GSK3α can be degraded via the ubiquitin proteasome system, stimulating mitochondrial function and sperm motility.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Peptidil-Prolil Isomerasa F , Complejo de la Endopetidasa Proteasomal , Motilidad Espermática , Animales , Masculino , Ratones , Adenosina Trifosfato/farmacología , Ciclosporina/farmacología , Peptidil-Prolil Isomerasa F/antagonistas & inhibidores , Peptidil-Prolil Isomerasa F/metabolismo , Semen , Motilidad Espermática/genética , Ubiquitinas
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166898, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774936

RESUMEN

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
9.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146639

RESUMEN

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Isoindoles , Mitocondrias , Compuestos de Organoselenio , Peptidil-Prolil Isomerasa F , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Humanos , Cognición/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Ratones Transgénicos , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
10.
J Biol Chem ; 299(12): 105458, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949231

RESUMEN

Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.


Asunto(s)
Adipogénesis , Proteína alfa Potenciadora de Unión a CCAAT , Poro de Transición de la Permeabilidad Mitocondrial , Envejecimiento , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Glucólisis , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Peptidil-Prolil Isomerasa F/genética , Peptidil-Prolil Isomerasa F/metabolismo , Factor de Transcripción ReIA
11.
Brain Res Bull ; 204: 110809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37931809

RESUMEN

BACKGROUND: Sevoflurane, a commonly administered inhaled anesthetic, is found to induce synaptic and mitochondrial damage in neonatal mice. Mitochondrial membrane potential (MMP) changes, mediated by Cyclophilin D (CypD), are implicated in mitochondrial function. Melatonin, known for its significant neuroprotective properties, was investigated in this study to elucidate its mechanisms in mitigating the cognitive impairment caused by sevoflurane. METHODS: The mice were categorized into several groups, including the control, vehicle, sevoflurane, vehicle plus sevoflurane, and melatonin plus sevoflurane groups. From postnatal day 6 to day 8, the mice were administered inhaled sevoflurane or intraperitoneal melatonin. MMP and reactive oxygen species (ROS) were measured using appropriate detection kits. The protein expression levels of PSD95, Synapsin Ⅰ, and CypD in the hippocampus were analyzed through western blotting in acute and prolonged terms. Immunofluorescence staining was used to assess the co-localizations of PSD95 or CypD in parvalbumin (PV) neurons. Cognitive ability was evaluated through novel object recognition, social interaction experiment, and the Morris water maze. RESULTS: The findings revealed that repeated exposure to sevoflurane in neonatal mice resulted in cognitive and synaptic impairment. Furthermore, melatonin administration suppressed the ROS and CypD protein expression, enhanced the MMP in mitochondria and synaptic protein expression in PV neurons, and ameliorated cognitive deficits. CONCLUSION: Melatonin alleviated sevoflurane-induced cognitive deficits by suppressing CypD and promoting synaptic development in hippocampal PV neurons. These results provide valuable insights into a promising therapeutic approach for preventing neurotoxic injuries caused by general anesthetics.


Asunto(s)
Anestésicos por Inhalación , Disfunción Cognitiva , Melatonina , Éteres Metílicos , Animales , Ratones , Sevoflurano/farmacología , Animales Recién Nacidos , Peptidil-Prolil Isomerasa F/metabolismo , Parvalbúminas/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Éteres Metílicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Cognición
12.
Lung ; 201(3): 287-295, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37261529

RESUMEN

INTRODUCTION: Airway epithelial mitochondrial injury is an important pathogenesis of chronic obstructive pulmonary disease (COPD). Cyclophilin D (CypD) is a component of mitochondrial permeability transition pore and related to mitochondrial damage. However, the role of CypD in airway epithelial mitochondrial injury and COPD pathogenesis remains unclear. METHODS: CypD expression in human airway epithelium was determined by immunohistochemistry, and mitochondrial structure of airway epithelial cell was observed under the transmission electron microscopy. The expression of CypD signaling pathway in cigarette smoke extract (CSE)-treated airway epithelial cells was measured by real-time PCR and Western-blot. CSE-induced damage of airway epithelial cell and mitochondria was further studied. RESULTS: Immunohistochemistry and transmission electron microscopy analysis revealed that CypD expression in airway epithelium was significantly increased associated with notable airway epithelial mitochondrial structure damage in the patients with COPD. The mRNA and protein expression of CypD was significantly increased in concentration- and time-dependent manners when airway epithelial cells were treated with CSE. CypD siRNA pretreatment significantly suppressed the increases of CypD and Bax expression, and reduced the decline of Bcl-2 expression in 7.5% CSE-treated airway epithelial cells. Furthermore, CypD silencing significantly attenuated mitochondrial damage and cell apoptosis, and increased cell viability when airway epithelial cells were stimulated with 7.5% CSE. CONCLUSION: These data suggest that CypD signaling pathway is involved in the pathogenesis of COPD and provide a potential therapeutic target for COPD.


Asunto(s)
Bronquios , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Peptidil-Prolil Isomerasa F/metabolismo , Bronquios/patología , Transducción de Señal , Nicotiana/metabolismo , Células Epiteliales/metabolismo , Mitocondrias
13.
Curr Pharm Des ; 29(8): 620-629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915987

RESUMEN

BACKGROUND: Mitochondria are multifunctional organelles, which participate in biochemical processes. Mitochondria act as primary energy producers and biosynthetic centers of cells, which are involved in oxidative stress responses and cell signaling transduction. Among numerous potential mechanisms of mitochondrial dysfunction, the opening of the mitochondrial permeability transition pore (mPTP) is a major determinant of mitochondrial dysfunction to induce cellular damage or death. A plenty of studies have provided evidence that the abnormal opening of mPTP induces the loss of mitochondrial membrane potential, the impairment calcium homeostasis and the decrease of ATP production. Cyclophilin D (CypD), localized in the mitochondrial transition pore, is a mitochondrial chaperone that has been regarded as a prominent mediator of mPTP. METHODS: This review describes the relationship between CypD, mPTP, and CypD-mPTP inhibitors through systematic investigation of recent relevant literature. RESULTS: Here, we have highlighted that inhibiting the activity of CypD protects models of some diseases, including ischaemia/reperfusion injury (IRI), neurodegenerative disorders and so on. Knockdown studies have demonstrated that CypD possibly is mediated by its peptidyl-prolyl cis-trans isomerase activity, while the primary targets of CypD remain obscure. The target of CypD-mPTP inhibitor can alleviate mPTP opening-induced cell death. The present review is focused on the role of CypD as a prominent mediator of the mPTP, further providing insight into the physiological function of mPTP and its regulation by CypD. CONCLUSION: Blocking the opening of mPTP by inhibiting CypD might be a new promising approach for suppressing cell death, which will suggest novel therapeutic approaches for mitochondria-related diseases.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Peptidil-Prolil Isomerasa F , Humanos , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
14.
Biochem Biophys Res Commun ; 644: 15-24, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36621148

RESUMEN

Titanium (Ti) ion can stimulate osteoblast apoptosis and therefore have a high potential to play a negative role in the aseptic loosening of implants. Mitochondrial abnormalities are closely related to osteoblast dysfunction. However, the mitochondrial molecular mechanism of Ti ion induced osteoblastic cell apoptosis is still unclear. This study investigated in vitro mitochondrial oxidative stress (mtROS) mediated mitochondrial dysfunction involved in Ti ion-induced apoptosis of murine MC3T3-E1 osteoblastic cells. In addition to reducing mitochondrial membrane potential (MMP) and decreasing adenosine triglyceride production, exposure to Ti ions increased mitochondrial oxidative stress. Moreover, mitochondrial abnormalities significantly contributed to Ti ion induction of osteoblastic cellular apoptosis. A mitochondria-specific antioxidant, mitoquinone (MitoQ), alleviated Ti ion-induced mitochondrial dysfunction and apoptosis in osteoblastic cells, indicating that Ti ion mainly induces mitochondrial oxidative stress to produce a cytotoxic effect on osteoblasts. Here we show that the primary regulator of mitochondrial permeability transition pore (mPTP), cyclophilin D (CypD), is involved in mitochondrial dysfunction and osteoblast cell apoptosis induced by Ti ion. Overexpression of CypD exacerbates osteoblast apoptosis and impairs osteogenic function. Moreover, detrimental effects of CypD were rescued by cyclosporin A (CsA), an inhibitor of CypD, which shows its protective effect on mitochondrial and osteogenic osteoblast functions. Based on new insights into the mitochondrial mechanisms underlying Ti ion-induced apoptosis of osteoblastic cells, the findings of this study lay the foundation for the clinical use of CypD inhibitors to prevent or treat implant failure.


Asunto(s)
Estrés Oxidativo , Titanio , Ratones , Animales , Peptidil-Prolil Isomerasa F/metabolismo , Titanio/farmacología , Ciclofilinas/metabolismo , Ciclosporina/farmacología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
15.
Adv Sci (Weinh) ; 10(7): e2204596, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36703613

RESUMEN

Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca2+ ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca2+ overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg2+ ), a natural Ca2+ antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Mitocondrias , Nanoestructuras , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Cognición , Peptidil-Prolil Isomerasa F/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/terapia , Nanoestructuras/química , Nanoestructuras/uso terapéutico
16.
Arch Insect Biochem Physiol ; 112(2): e21970, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36200410

RESUMEN

Microplitis bicoloratus parasitism can induce apoptosis of hemocytes in the M. bicolortus host, Spodoptera litura. However, it is unclear how M. bicolortus parasitism regulates host signaling pathways to induce apoptosis. Expression of cyclophilin D (CypD) and p53 was significantly upregulated in S. litura hemocytes at 6 days postparasitization. In the parasitized hemocytes, there was mitochondrial membrane potential (△Ψm ) loss, cytochrome c (Cyt C) release from mitochondria, and caspase-3 activation. These occurred while hemocytes were undergoing upregulation of CypD and p53. Parasitism also promoted the interaction between CypD and p53. CypD silencing could rescue the apoptotic phenotypes induced by parasitism, but had no effect on apoptosis in unparasitized S. litura. These findings suggest that the CypD-p53 pathway may be an important component of the parasitism-induced immunosuppressive response and establish a basis for further studies of parasitoid/host interactions.


Asunto(s)
Polydnaviridae , Avispas , Animales , Spodoptera/metabolismo , Avispas/metabolismo , Larva/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Hemocitos/metabolismo , Polydnaviridae/metabolismo , Apoptosis/fisiología
17.
Curr Mol Med ; 23(9): 971-980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36089783

RESUMEN

OBJECTIVE: Acute acalculous cholecystitis (AAC) is characterized by acute onset, rapid progression, high mortality, and various complications. Cyclophilin D (CypD) regulates the mitochondrial permeability transition pore (MPTP) and is involved in the occurrence of ischemia-reperfusion injury and inflammation; however, the role of CypD in AAC remains unclear. METHODS: Guinea pigs of 300-350 g were randomly divided into three groups, namely the sham group, the common bile duct ligation-24h group (CBDL-24h group), and the CBDL-48h group. Western blot and qRT-PCR were applied to analyze the differential expression of CypD in each group, and transmission electron microscopy was employed to detect changes in mitochondrial structure. Inhibiting the activity of CypD by Cyclosporine A (CsA), we evaluated the difference of mitochondrial utilizing mitochondrial swelling, reactive oxygen species (ROS) detection and mitochondrial membrane potential. RESULTS: Compared with the sham group, the prolongation of obstruction aggravated gallbladder inflammation and upregulated CypD expression in the CBDL-24h and CBDL-48h groups. The degree of mitochondrial swelling was increased, and the opening of MPTP was prolonged in the CBDL-24h and 48h groups. Decreasing the expression of CypD could repress the opening of MPTP, prevent manipulation of the mitochondrial membrane potential, and ultimately diminish the levels of intracellular ROS and apoptosis. CONCLUSION: CypD plays a proinflammatory role in the development of AAC by regulating the opening of MPTP. Inhibiting the activity of CypD could reduce the levels of ROS and apoptosis, rescue the function of mitochondria and finally alleviate AAC. Therefore, CypD might serve as a potential therapeutic target for ACC.


Asunto(s)
Colecistitis Alitiásica , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Cobayas , Peptidil-Prolil Isomerasa F/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Apoptosis , Estrés Oxidativo , Inflamación
18.
Eur J Pharmacol ; 940: 175475, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36563952

RESUMEN

Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Humanos , NADPH Oxidasa 4/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/farmacología , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Ácido Gálico/farmacología , COVID-19/metabolismo , Mitocondrias , Células Endoteliales de la Vena Umbilical Humana
19.
J Phys Chem B ; 126(51): 10844-10853, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36529932

RESUMEN

Mitochondria are the powerhouse of a cell, whose disruption due to mitochondrial pore opening can cause cell death, leading to necrosis and many other diseases. The peptidyl-prolyl cis-trans isomerase cyclophilin D (CypD) is a key player in the regulation of the mitochondrial pore. The activity of CypD can be modulated by the post-translational modification (PTM). However, the detailed mechanism of this functional modulation is not well understood. Here, we investigate the catalytic mechanism of unmodified and modified CypD by calculating the reaction free energy profiles and characterizing the function-related conformational dynamics using molecular dynamics simulations and associated analyses. Our results show that unmodified and modified CypD considerably lower the isomerization free energy barrier compared to a free peptide substrate, supporting the catalytic activity of CypD in the simulation systems. The unmodified CypD reduces the free energy difference between the cis and trans states of the peptide substrate, suggesting a stronger binding affinity of CypD toward cis, consistent with experiments. In contrast, phosphorylated CypD further stabilizes trans, leading to a lower catalytic rate in the trans-to-cis direction. The differential catalytic activities of the unmodified and phosphorylated CypD are due to a significant shift of the conformational ensemble upon phosphorylation under different functional states. Interestingly, the local flexibility is both reduced and enhanced at distinct regions by phosphorylation, which is explained by a "seesaw" model of flexibility modulation. The allosteric pathway between the phosphorylation site and a distal site displaying substantial conformational changes upon phosphorylation is also identified, which is influenced by the presence of the substrate or the substrate conformation. Similar conclusions are obtained for the acetylation of CypD using the same peptide substrate and the influence of substrate sequence is also examined. Our work may serve as the basis for the understanding of other PTMs and PTM-initiated allosteric regulations in CypD.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Peptidil-Prolil Isomerasa F/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional
20.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557795

RESUMEN

(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10-5 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Peptidil-Prolil Isomerasa F/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA