Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Environ Geochem Health ; 46(6): 193, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696028

Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.


Copper , Germination , Perilla , Polyvinyl Chloride , Seeds , Germination/drug effects , Copper/toxicity , Seeds/drug effects , Perilla/drug effects , Microplastics/toxicity , Particle Size , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Soil Pollutants/toxicity
2.
Molecules ; 24(21)2019 Oct 30.
Article En | MEDLINE | ID: mdl-31671710

The growing market demand for plant raw materials with improved biological value promotes the extensive search for new elicitors and biostimulants. Gellan gum derivatives may enhance plant growth and development, but have never been used under stress conditions. Perilla (Perilla frutescens, Lamiaceae) is a source of valuable bioproducts for the pharmaceutical, cosmetic, and food industries. However, there is not much information on the use of biostimulators in perilla cultivation. In this work we investigated the effects of oligo-gellan and salt (100 mM NaCl) on the yield and quality of red perilla (P. frutescens var. crispa f. purpurea) leaves. Plants grown under stress showed inhibited growth, smaller biomass, their leaves contained less nitrogen, phosphorus, potassium, total polyphenol and total anthocyanins, and accumulated considerably more sodium than control plants. Treatment with oligo-gellan under non-saline conditions stimulated plant growth and the fresh weight content of the above-ground parts, enhanced the accumulation of nitrogen, potassium, magnesium and total polyphenols, and increased antioxidant activity as assessed by DPPH and ABTS assays. Oligo-gellan applied under saline conditions clearly alleviated the stress effects by limiting the loss of biomass, macronutrients, and total polyphenols. Additionally, plants pretreated with oligo-gellan and then exposed to 100 mM NaCl accumulated less sodium, produced greater amounts of photosynthetic pigments, and had greater antioxidant activity than NaCl-stressed plants. Irrespective of the experimental treatment, 50% extract effectively inhibited growth of Escherichia coli and Staphylococcus aureus. Both microorganisms were the least affected by 25% extract obtained from plants untreated with either NaCl or oligo-gellan. In conclusion, oligo-gellan promoted plant growth and enhanced the quality of red perilla leaves and efficiently alleviated the negative effects of salt stress.


Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Minerals/metabolism , Perilla/physiology , Pigments, Biological/metabolism , Polysaccharides, Bacterial/pharmacology , Sodium Chloride/toxicity , Stress, Physiological/drug effects , Anthocyanins/analysis , Microbial Sensitivity Tests , Perilla/drug effects , Perilla/growth & development , Photosynthesis/drug effects , Polyphenols/analysis
3.
Zhongguo Zhong Yao Za Zhi ; 35(23): 3114-9, 2010 Dec.
Article Zh | MEDLINE | ID: mdl-21355229

OBJECTIVE: In order to find a method for improving the salt resistance of seeds and seedlings for Perilla frutescens under NaCl stress, seed germination and physiological characteristics of P. frutescens seedlings were studied. METHOD: Several physiological indexes of P. frutescens seeds treated by Ca2+ and sodium nitroprusside (SNP) under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the biomass of the seedlings, the content of malondialdehyde (MDA) in leaves, the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured. RESULT: The germination of P. frutescens seeds under NaCl stress was inhibited obviously. But after the treatment with Ca2+ and SNP, all of the germination indexes increased. And the seeds that treated with SNP + Ca2+ had the most significantly increase in all indexes. The germination vigor was 65.1%, the germination rate was 89.3%, the germination index and vigor index were 13.9 and 0.1109, respectively. The content of MDA decreased after the treatment. The activities of three enzymes include SOD, POD and CAT were increased by the treatment and get the maximin 0.84, 5.71 and 4.92 U x mg(-1) respectively. And the EGTA showed an obvious inhibition to the effect of SNP on P. frutescens. CONCLUSION: SNP (0.1 mmol x L(-1)) and Ca2+ (10 mmol x L(-1)) could significantly alleviate the damages to the seeds and seedlings of P. frutescens under NaCl stress, and promote the salt resistance of the seeds and seedlings. These results might suggest that exogenous NO might enhance P. frutescens salt resistance and alleviate salt injury possible by enhancing Ca2+ influx by activating Ca2+ channels and improving concentration of Ca2+ of P. frutescens seedlings.


Calcium/pharmacology , Catalase/metabolism , Germination/drug effects , Nitroprusside/pharmacokinetics , Perilla/physiology , Peroxidases/metabolism , Plant Proteins/metabolism , Sodium Chloride/metabolism , Perilla/drug effects , Perilla/enzymology , Seedlings/drug effects , Seedlings/enzymology , Seedlings/metabolism , Seedlings/physiology , Stress, Physiological
...