Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(39): 2943-2955, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34547893

RESUMEN

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane. Notably, accumulating data suggest that AMPs can activate the two-component systems (TCSs) of Gram-negative bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible for remodeling of the bacterial cell surface. To better understand this mechanism, we utilized bacteria deficient either in one system alone or in both and biophysical tools including fluorescence spectroscopy, single-cell atomic force microscopy, electron microscopy, and mass spectrometry (Moskowitz, S. M.; Antimicrob. Agents Chemother. 2012, 56, 1019-1030; Cheng, H. Y.; J. Biomed. Sci. 2010, 17, 60). Our data suggested that the two systems have opposing effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs by making the surface less rigid, more polarized, and permeable with a slightly more negatively charged cell wall. In addition, the periplasmic space is thinner. In contrast, the knockout of PmrAB did not affect its susceptibility, while it made the bacterial outer layer very rigid, less polarized, and less permeable than the other two mutants, with a negatively charged cell wall similar to the WT. Overall, the data suggest that the coexistence of systems with opposing effects on the biophysical properties of the bacteria contribute to their membrane flexibility, which, on the one hand, is important to accommodate changing environments and, on the other hand, may inhibit the development of meaningful resistance to AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Infecciones por Salmonella/tratamiento farmacológico , Salmonella enterica/efectos de los fármacos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Periplasma/efectos de los fármacos , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella enterica/aislamiento & purificación , Salmonella enterica/metabolismo , Serogrupo
2.
Mol Microbiol ; 115(3): 383-394, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217073

RESUMEN

The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.


Asunto(s)
Proteínas Bacterianas/fisiología , Chaperonas Moleculares/fisiología , Sistemas de Secreción Tipo VI/fisiología , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Secuencia Conservada , Citoplasma/efectos de los fármacos , Interacciones Microbianas , Periplasma/efectos de los fármacos , Dominios Proteicos
3.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260377

RESUMEN

We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.


Asunto(s)
Amidohidrolasas/metabolismo , Biocatálisis , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Secuencia Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Ácidos Hidroxámicos/farmacología , Lipopolisacáridos/química , Mutación/genética , Operón/genética , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Fosfolípidos/biosíntesis , Fosfolípidos/química , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Proteolisis/efectos de los fármacos , Supresión Genética , Temperatura , Treonina/análogos & derivados , Treonina/farmacología , Transcripción Genética/efectos de los fármacos
4.
Cell Rep ; 31(12): 107813, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579939

RESUMEN

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into competitors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain of l,d-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical assays reveal that Tlde1 displays both l,d-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides between meso-diaminopimelic acid3 and d-alanine4 and l,d-transpeptidase exchange activity by replacing d-alanine4 by a non-canonical d-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our current knowledge about bacterial effectors used in interbacterial competition and reveals a different mechanism of bacterial antagonism.


Asunto(s)
Antibacterianos/farmacología , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Evolución Molecular , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Proteobacteria/efectos de los fármacos , Proteobacteria/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo
5.
Int J Med Microbiol ; 310(2): 151396, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32005588

RESUMEN

The occurrence of antibiotic resistance bacteria has become a major threat to public health. We have recently discovered a transcriptional activator that belongs to MarR family, EstR, and an esterase B (EstB) with a newly proposed de-arenethiolase activity from Sphingobium sp. SM42. De-arenethiolase activity involves the removal of the small aromatic side chain of cephalosporin antibiotics as an excellent leaving group by the enzymatic CS bond cleavage. Here, we report the regulation of estB through EstR as an activator in response to a third generation cephalosporin, cefoperazone, antibiotic. Cefoperazone induced the expression of estB in wild type Sphingobium sp., but not in the estR knockout strain, and the induction was restored in the complemented strain. Moreover, we revealed the importance of EstB localization in periplasm. Since EsB has the ability to inactivate selected ß-lactam antibiotics in vitro, it is possible that the enzyme works at the periplasmic space of Gram negative bacteria similar to ß-lactamases. EstB was genetically engineered by incorporating NlpA binding motif, or OmpA signal sequence, or SpyTag-SpyCatcher to the estB gene to mobilize it to different compartments of periplasm; inner membrane, outer membrane, and periplasmic space, respectively. Surprisingly, we found that Sphingobium sp. SM42 and E. coli expressing EstB at the periplasm were more sensitive to cefoperazone. The possible drug enhancement mechanism by enzyme was proposed. This work might lead to a novel strategy to tackle antibiotic resistance problem.


Asunto(s)
Cefoperazona/farmacología , Cefalosporinas/farmacología , Periplasma/enzimología , Serina Endopeptidasas/genética , Sphingomonadaceae/efectos de los fármacos , Factores de Transcripción/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Periplasma/efectos de los fármacos , Señales de Clasificación de Proteína , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética
6.
Nanotechnology ; 31(13): 134005, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31810073

RESUMEN

Combining abiotic photosensitisers such as quantum dots (QDs) with non-photosynthetic bacteria presents an intriguing concept into the design of artificial photosynthetic organisms and solar-driven fuel production. Shewanella oneidensis MR-1 (MR-1) is a versatile bacterium concerning respiration, metabolism and biocatalysis, and is a promising organism for artificial photosynthesis as the bacterium's synthetic and catalytic ability provides a potential system for bacterial biohydrogen production. MR-1's hydrogenases are present in the periplasmatic space. It follows that for photoenergised electrons to reach these enzymes, QDs will need to be able to enter the periplasm, or electrons need to enter the periplasm via the Mtr pathway that is responsible for MR-1's extracellular electron transfer ability. As a step towards this goal, various QDs were tested for their photo-reducing potential, nanotoxicology and further for their interaction with MR-1. CdTe/CdS/TGA, CdTe/CdS/Cysteamine, a commercial, negatively charged CdTe and CuInS2/ZnS/PMAL QDs were examined. The photoreduction potential of the QDs was confirmed by measuring their ability to photoreduce methyl viologen with different sacrificial electron donors. The commercial CdTe and CuInS2/ZnS/PMAL QDs showed no toxicity towards MR-1 as evaluated by a colony-forming units method and a fluorescence viability assay. Only the commercial negatively charged CdTe QDs showed good interaction with MR-1. With transmission electron microscopy, QDs were observed both in the cytoplasm and periplasm. These results inform on the possibilities and bottlenecks when developing bionanotechnological systems for the photosynthetic production of biohydrogen by MR-1.


Asunto(s)
Antibacterianos/toxicidad , Hidrogenasas/antagonistas & inhibidores , Puntos Cuánticos/toxicidad , Shewanella/enzimología , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Compuestos de Cadmio/química , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Periplasma/efectos de los fármacos , Periplasma/enzimología , Fotosíntesis/efectos de los fármacos , Puntos Cuánticos/química , Shewanella/efectos de los fármacos , Telurio/química , Compuestos de Zinc/química
7.
PLoS Pathog ; 15(12): e1008101, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877175

RESUMEN

Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Femenino , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos BALB C , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo
8.
Cell Rep ; 29(1): 187-201.e7, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577948

RESUMEN

The type VI secretion system (T6SS) is crucial in interbacterial competition and is a virulence determinant of many Gram-negative bacteria. Several T6SS effectors are covalently fused to secreted T6SS structural components such as the VgrG spike for delivery into target cells. In Pseudomonas aeruginosa, the VgrG2b effector was previously proposed to mediate bacterial internalization into eukaryotic cells. In this work, we find that the VgrG2b C-terminal domain (VgrG2bC-ter) elicits toxicity in the bacterial periplasm, counteracted by a cognate immunity protein. We resolve the structure of VgrG2bC-ter and confirm it is a member of the zinc-metallopeptidase family of enzymes. We show that this effector causes membrane blebbing at midcell, which suggests a distinct type of T6SS-mediated growth inhibition through interference with cell division, mimicking the impact of ß-lactam antibiotics. Our study introduces a further effector family to the T6SS arsenal and demonstrates that VgrG2b can target both prokaryotic and eukaryotic cells.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Pseudomonas aeruginosa/fisiología , Sistemas de Secreción Tipo VI/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Periplasma/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo , beta-Lactamas/metabolismo
9.
Mol Plant Microbe Interact ; 30(10): 770-777, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28745538

RESUMEN

The legume symbiont Sinorhizobium meliloti is chemoattracted to compounds exuded by germinating seeds of its host alfalfa. This response is mainly mediated by the S. meliloti chemoreceptor McpU. McpU also has a prominent contribution in sensing a synthetic amino acid (aa) mixture mimicking the amounts and composition observed in seed exudate. Here, we used the hydrogel capillary assay to quantify chemotactic responses of S. meliloti to individual aa exuded by germinating alfalfa seeds and to define the role of McpU in this behavior. S. meliloti exhibited positive chemotaxis responses to all proteinogenic aa, except for aspartate, and to citrulline, cystine, gamma-aminobutyric acid, and ornithine. Wild-type responses were diverse in intensity, while a strain lacking mcpU displayed strongly diminished responses. Differential scanning fluorimetry demonstrated interaction of the purified periplasmic region of McpU (McpU-PR) with the aa, except glutamate and aspartate. We additionally tested organic acids and sugars, but there were no significant interactions with the McpU ligand-binding domain, except for citrate. Using ligand displacement, we confirmed the interaction of McpU-PR with aa representing strong and weak attractants. Our results show that S. meliloti McpU is a broad-range aa receptor mediating differential responses to individual attractants, which does not bind negatively charged aa.


Asunto(s)
Aminoácidos/farmacología , Proteínas Bacterianas/metabolismo , Quimiotaxis/efectos de los fármacos , Sinorhizobium meliloti/citología , Fluorometría , Eliminación de Gen , Ligandos , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Desnaturalización Proteica/efectos de los fármacos , Dominios Proteicos , Sinorhizobium meliloti/efectos de los fármacos , Temperatura
10.
FEBS Lett ; 590(24): 4495-4506, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27859138

RESUMEN

Microbial pathogens often require efficient and robust H2 O2 scavenger activities to survive in the presence of reactive oxygen species generated by inflammatory responses. In addition to catalases and peroxidases, enzymes known to scavenge H2 O2 , a novel class of secreted minicatalases is found in diderm bacteria. Here, we characterize the Helicobacter pylori (Hp) minicatalase: a monomeric hemoprotein with catalase core homology. Overexpression of Hp minicatalase rescued a catalase/peroxidase-deficient Escherichia coli phenotype under aerobic conditions and limited H2 O2 stress. The purified enzyme lacks catalase activity, but has strong (kcat > 100 s-1 ) H2 O2 -dependent peroxidase activity toward a variety of organic substrates. Our investigations into heme binding revealed that the heme cofactor is assembled in the periplasm to form the functional holoprotein. Furthermore, we observed the presence of a disulfide bond near the heme cavity of Hp minicatalase, which is conserved in secreted minicatalases and, therefore, may play a role in heme binding.


Asunto(s)
Proteínas Bacterianas/química , Catalasa/química , Helicobacter pylori/enzimología , Hemo/química , Hemoproteínas/química , Periplasma/enzimología , Peroxidasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Prueba de Complementación Genética , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Cinética , Modelos Moleculares , Oxidación-Reducción , Estrés Oxidativo , Periplasma/química , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
11.
Proc Natl Acad Sci U S A ; 113(41): 11573-11578, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679850

RESUMEN

Copper homeostasis is essential for bacterial pathogen fitness and infection, and has been the focus of a number of recent studies. In Salmonella, envelope protection against copper overload and macrophage survival depends on CueP, a major copper-binding protein in the periplasm. This protein is also required to deliver the metal ion to the Cu/Zn superoxide dismutase SodCII. The Salmonella-specific CueP-coding gene was originally identified as part of the Cue regulon under the transcriptional control of the cytoplasmic copper sensor CueR, but its expression differs from the rest of CueR-regulated genes. Here we show that cueP expression is controlled by the concerted action of CueR, which detects the presence of copper in the cytoplasm, and by CpxR/CpxA, which monitors envelope stress. Copper-activated CueR is necessary for the appropriate spatial arrangement of the -10 and -35 elements of the cueP promoter, and CpxR is essential to recruit the RNA polymerase. The integration of two ancestral sensory systems-CueR, which provides signal specificity, and CpxR/CpxA, which detects stress in the bacterial envelope-restricts the expression of this periplasmic copper resistance protein solely to cells encountering surplus copper that disturbs envelope homeostasis, emulating the role of the CusR/CusS regulatory system present in other enteric bacteria.


Asunto(s)
Cobre/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Periplasma/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transducción de Señal , Transcripción Genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Regiones Operadoras Genéticas/genética , Periplasma/efectos de los fármacos , Fosforilación/efectos de los fármacos , Filogenia , Cianuro de Potasio/farmacología , Regiones Promotoras Genéticas/genética , Regulón/genética , Salmonella typhimurium/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
12.
PLoS One ; 11(3): e0150349, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950881

RESUMEN

Several bacterial sensory-kinase receptors form clusters on the cell membrane. However, the dynamics of sensory-kinase clustering are largely unclear. Using measurements of fluorescence anisotropy and time-lapse imaging of Escherichia coli cells, we demonstrate that copper ions trigger self-association of BaeS receptors and lead to rapid formation of clusters, which can be reversibly dispersed by a metal chelator. Copper ions did not trigger self-association of other fluorescently tagged sensory kinases, and other divalent metal ions could not elicit self-association of BaeS. The histidine residues in the BaeS periplasmic domain are essential for copper binding in vitro and are important for the copper-induced BaeS responses in vivo. BaeS clustering was triggered also under conditions that directly triggered BaeS-dependent transcriptional responses. Thus, clustering of sensory kinase receptors can be dynamic and context dependent and can be triggered by specific environmental cues.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Cobre/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina , Concentración de Iones de Hidrógeno , Mutación , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Proteínas Periplasmáticas/genética , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Transcripción Genética/efectos de los fármacos , Compuestos de Tungsteno/farmacología
13.
Metallomics ; 8(1): 125-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26600288

RESUMEN

The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low µM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with µM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compuestos Férricos/metabolismo , Bombas Iónicas/metabolismo , Metales/metabolismo , Periplasma/metabolismo , Ácidos Tricarboxílicos/metabolismo , Aminoácidos/metabolismo , Calorimetría , Rastreo Diferencial de Calorimetría , Ácido Cítrico/farmacología , Escherichia coli/efectos de los fármacos , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno , Periplasma/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos
14.
PLoS One ; 10(9): e0138033, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26371472

RESUMEN

Previous work by our group described that human ß-defensin-2 induces accumulation of extracellular adenosine (Ado) in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT) is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT), leading to the formation of a potent immunomodulator metabolite (Ado).


Asunto(s)
Adenosina/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Inmunomodulación/efectos de los fármacos , Nucleotidasas/metabolismo , Periplasma/enzimología , beta-Defensinas/farmacología , Adenosina/biosíntesis , Escherichia coli/efectos de los fármacos , Escherichia coli/inmunología , Humanos , Periplasma/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Solubilidad
15.
Antimicrob Agents Chemother ; 59(10): 5992-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169420

RESUMEN

In view of increasing health threats from multiresistant pathogens, antimicrobial peptides (AMPs) and, specifically, proline-rich AMPs (PrAMPs) have been investigated in animal models. PrAMPs enter bacteria via the ABC transporter SbmA and inhibit intracellular targets. We used phage transduction (Tn10 insertion) to screen by random mutagenesis for alternative uptake mechanisms for analogs of apidaecin 1b, a honeybee-derived PrAMP. All 24 apidaecin-resistant mutants had the Tn10 insertion in the sbmA gene. These sbmA::Tn10 insertion mutants and the Escherichia coli BW25113 ΔsbmA (JW0368) strain were still susceptible to the bactenecin PrAMP Bac7(1-35) and oncocin PrAMPs Onc18 and Onc112, as well as to Chex1-Arg20, despite significantly reduced internalizations. In a second round of random mutagenesis, the remaining susceptibility was linked to the yjiL-mdtM gene cluster. E. coli BW25113 and its ΔyjiL null mutant (JW5785) were equally susceptible to all PrAMPs tested, whereas the BW25113 ΔmdtM mutant was less susceptible to oncocins. The JW0368 yjiL::Tn10 transposon mutant (BS2) was resistant to all short PrAMPs and susceptible only to full-length Bac7 and A3-APO. Interestingly, PrAMPs appear to enter bacteria via MdtM, a multidrug resistance transporter (drug/H(+) antiporter) of the major facilitator superfamily (MFS) that can efflux antibiotics, biocides, and bile salts. In conclusion, PrAMPs enter bacteria via ABC and MFS transporters that efflux antibiotics and cytotoxic compounds from the cytoplasm to the periplasm.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Antiportadores/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Antiportadores/metabolismo , Abejas/química , Abejas/fisiología , Transporte Biológico , Colifagos/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Familia de Multigenes , Mutación , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Dominios Proteicos Ricos en Prolina , Transducción Genética
16.
PLoS One ; 10(5): e0127149, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010545

RESUMEN

Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA), an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II) as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological inhibitors of human carbonic anhydrases, acetazolamide and methazolamide. This analysis reveals that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the CO2 substrate in the Michaelis complex, whilst the zinc-coordinating sulfonamide nitrogen occupies the position of the catalytic water molecule. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit. This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/metabolismo , Sulfonamidas/farmacología , Acetazolamida/farmacología , Secuencia de Aminoácidos , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Humanos , Metazolamida/farmacología , Datos de Secuencia Molecular , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Alineación de Secuencia
17.
Artículo en Ruso | MEDLINE | ID: mdl-26950984

RESUMEN

AIM: Detection of bactericidal effect of pulse-periodic corona discharge (PPCD) on cells and biofilms of Escherichia coli M17. MATERIALS AND METHODS: A gas-discharge device was created based on PPCD in air with power supply parameters: amplitude values of voltage of 30 - 60 kV, pulse repetition rate of 250 - 400 kHz. Ultrastructure changes in cells and biofilms of E. coli M17, affected by PPCD, generated in air, were studied by typical methods of transmission electron microscopy. RESULTS: Disturbances of integrity of surface and abyssal structures of biofilms, as well as changes of morphological properties of E. coli M17 cells, characteristic for sub-lethal heat impact, were detected. Destructive changes of bacterial cells were developed by formation of focal disturbance of cytoplasmic membrane, extension of periplasmic space, formation of globular structures, characteristic for heat effect, and destruction of cytoplasm. CONCLUSION: Bactericidal effect of PPCD on E. coli M17 cells as part of biofilms was shown. Destructive morphological changes in cells and biofilms of E. coli M17 after the effect of PPCD were detected for the first time on electron-microscopic level.


Asunto(s)
Biopelículas/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Periplasma/efectos de los fármacos , Gases em Plasma/farmacología , Biopelículas/crecimiento & desarrollo , Membrana Celular/ultraestructura , Electricidad , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Calor , Microscopía Electrónica de Transmisión , Periplasma/ultraestructura
18.
J Biol Chem ; 290(1): 65-75, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25391835

RESUMEN

Enteric bacteria such as Escherichia coli utilize various acid response systems to counteract the acidic environment of the mammalian stomach. To protect their periplasmic proteome against rapid acid-mediated damage, bacteria contain the acid-activated periplasmic chaperones HdeA and HdeB. Activation of HdeA at pH 2 was shown to correlate with its acid-induced dissociation into partially unfolded monomers. In contrast, HdeB, which has high structural similarities to HdeA, shows negligible chaperone activity at pH 2 and only modest chaperone activity at pH 3. These results raised intriguing questions concerning the physiological role of HdeB in bacteria, its activation mechanism, and the structural requirements for its function as a molecular chaperone. In this study, we conducted structural and biochemical studies that revealed that HdeB indeed works as an effective molecular chaperone. However, in contrast to HdeA, whose chaperone function is optimal at pH 2, the chaperone function of HdeB is optimal at pH 4, at which HdeB is still fully dimeric and largely folded. NMR, analytical ultracentrifugation, and fluorescence studies suggest that the highly dynamic nature of HdeB at pH 4 alleviates the need for monomerization and partial unfolding. Once activated, HdeB binds various unfolding client proteins, prevents their aggregation, and supports their refolding upon subsequent neutralization. Overexpression of HdeA promotes bacterial survival at pH 2 and 3, whereas overexpression of HdeB positively affects bacterial growth at pH 4. These studies demonstrate how two structurally homologous proteins with seemingly identical in vivo functions have evolved to provide bacteria with the means for surviving a range of acidic protein-unfolding conditions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Chaperonas Moleculares/química , Periplasma/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Clorhídrico/farmacología , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Desplegamiento Proteico , Estrés Fisiológico
19.
PLoS One ; 9(9): e106513, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25215579

RESUMEN

The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Etanolaminofosfotransferasa/metabolismo , Lípido A/metabolismo , Neisseria meningitidis/enzimología , Oxidorreductasas/metabolismo , Polimixinas/farmacología , Biocatálisis/efectos de los fármacos , Disulfuros/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Mutación/genética , Neisseria meningitidis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Periplasma/efectos de los fármacos , Periplasma/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(37): 13523-8, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197056

RESUMEN

The torque of the bacterial flagellum is generated by the rotor-stator interaction coupled with the ion flow through the channel in the stator. Anchoring the stator unit to the peptidoglycan layer with proper orientation around the rotor is believed to be essential for smooth rotation of the flagellar motor. The stator unit of the sodium-driven flagellar motor of Vibrio is composed of PomA and PomB, and is thought to be fixed to the peptidoglycan layer and the T-ring by the C-terminal periplasmic region of PomB. Here, we report the crystal structure of a C-terminal fragment of PomB (PomBC) at 2.0-Å resolution, and the structure suggests a conformational change in the N-terminal region of PomBC for anchoring the stator. On the basis of the structure, we designed double-Cys replaced mutants of PomB for in vivo disulfide cross-linking experiments and examined their motility. The motility can be controlled reproducibly by reducing reagent. The results of these experiments suggest that the N-terminal disordered region (121-153) and following the N-terminal two-thirds of α1(154-164) in PomBC changes its conformation to form a functional stator around the rotor. The cross-linking did not affect the localization of the stator nor the ion conductivity, suggesting that the conformational change occurs in the final step of the stator assembly around the rotor.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Periplasma/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Cisteína/genética , Disulfuros/metabolismo , Flagelos/efectos de los fármacos , Iones , Modelos Moleculares , Mutación/genética , Periplasma/efectos de los fármacos , Estructura Terciaria de Proteína , Sustancias Reductoras/farmacología , Sodio/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Vibrio/efectos de los fármacos , Vibrio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA