Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 424
1.
Protein Eng Des Sel ; 372024 Jan 29.
Article En | MEDLINE | ID: mdl-38302088

We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ∆F/F0vs [nicotine] (δ-slope, 2.7 µM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the 'candle snuffer' mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.


Biosensing Techniques , Periplasmic Binding Proteins , Humans , Animals , Mice , Nicotine , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/metabolism , Ligands , Binding Sites
2.
mBio ; 15(2): e0303923, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38193657

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.


Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Transport Proteins/metabolism , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism
3.
J Biochem ; 175(4): 427-437, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38156779

The envelope of Escherichia coli contains approximately 100 different species of lipoproteins, most of which are localized to the inner leaflet of the outer membrane. The localization of lipoprotein (Lol) system, consisting of five Lol proteins, is responsible for the trafficking of lipoproteins to the outer membrane. LolCDE binds to lipoproteins destined for the outer membrane and transfers them to the periplasmic chaperone LolA. Although the cryo-EM structures of E. coli LolCDE have been reported, the mechanisms by which outer membrane lipoproteins are transferred to LolA remain elusive. In this study, we investigated the interaction between LolCDE and lipoproteins using site-specific photo-crosslinking. We introduced a photo-crosslinkable amino acid into different locations across the four helices which form the central lipoprotein-binding cavity, and identified domains that crosslink with peptidoglycan-associated lipoprotein (Pal) in vivo. Using one of the derivatives containing the photo-crosslinkable amino acid, we developed an in vitro system to analyze the binding of lipoproteins to LolCDE. Our results indicate that compound 2, a LolCDE inhibitor, does not inhibit the binding of lipoproteins to LolCDE, but rather promotes the dissociation of bound lipoproteins from LolCDE.


Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Cell Membrane/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Amino Acids/metabolism , Bacterial Outer Membrane Proteins/metabolism , Periplasmic Binding Proteins/metabolism
4.
J Hazard Mater ; 464: 132975, 2024 02 15.
Article En | MEDLINE | ID: mdl-38044020

Cyclosporine A (CsA) is a model drug that has caused great concern due to its widespread use and abuse in the environment. However, the potential harm of CsA to organisms also remains largely unknown, and this issue is exceptionally important for the health risk assessment of antibiotics. To address this concern, the crosstalk between CsA stress and cellular metabolism at the proteomic level in Escherichia coli was investigated and dissected in this study. The results showed that CsA inhibited E. coli growth in a time-dependent manner. CsA induced reactive oxygen species (ROS) overproduction in a dose- and time-dependent manner, leading to membrane depolarization followed by cell apoptosis. In addition, translation, the citric acid cycle, amino acid biosynthesis, glycolysis and responses to oxidative stress and heat were the central metabolic pathways induced by CsA stress. The upregulated proteins, including PotD, PotF and PotG, controlled cell growth. The downregulated proteins, including SspA, SspB, CstA and DpS, were regulators of self-feedback during the starvation process. And the up- and downregulated proteins, including AtpD, Adk, GroS, GroL and DnaK, controlled energy production. These results provide an important reference for the environmental health risk assessment of CsA.


Escherichia coli Proteins , Periplasmic Binding Proteins , Cyclosporine/pharmacology , Cyclosporine/metabolism , Immunosuppressive Agents/toxicity , Escherichia coli/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Oxidative Stress , Metabolic Networks and Pathways , Membrane Transport Proteins/metabolism , Periplasmic Binding Proteins/metabolism
5.
Sci Rep ; 13(1): 20558, 2023 11 23.
Article En | MEDLINE | ID: mdl-37996461

Periplasmic solute-binding proteins (SBPs) specific for chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, 5 and 6), are involved in the uptake of chitinous nutrients and the negative control of chitin signal transduction in Vibrios. Most translocation processes by SBPs across the inner membrane have been explained thus far by two-domain open/closed mechanism. Here we propose three-domain mechanism of the (GlcNAc)n translocation based on experiments using a recombinant VcCBP, SBP specific for (GlcNAc)n from Vibrio cholerae. X-ray crystal structures of unliganded or (GlcNAc)3-liganded VcCBP solved at 1.2-1.6 Å revealed three distinct domains, the Upper1, Upper2 and Lower domains for this protein. Molecular dynamics simulation indicated that the motions of the three domains are independent and that in the (GlcNAc)3-liganded state the Upper2/Lower interface fluctuated more intensively, compared to the Upper1/Lower interface. The Upper1/Lower interface bound two GlcNAc residues tightly, while the Upper2/Lower interface appeared to loosen and release the bound sugar molecule. The three-domain mechanism proposed here was fully supported by binding data obtained by thermal unfolding experiments and ITC, and may be applicable to other translocation systems involving SBPs belonging to the same cluster.


Chitosan , Periplasmic Binding Proteins , Humans , Periplasmic Binding Proteins/metabolism , Chitosan/metabolism , Chitin/metabolism , Carrier Proteins/metabolism , Molecular Dynamics Simulation , Ligands , Translocation, Genetic , Crystallography, X-Ray
6.
Protein Sci ; 32(11): e4793, 2023 11.
Article En | MEDLINE | ID: mdl-37788980

Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.


Periplasmic Binding Proteins , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/metabolism , Carrier Proteins/chemistry , Amino Acid Sequence , Ligands , Protein Binding , Evolution, Molecular
7.
Biochem Biophys Res Commun ; 681: 41-46, 2023 11 12.
Article En | MEDLINE | ID: mdl-37751633

Klebsiella pneumoniae, a facultative anaerobe, relies on acquiring molybdenum to sustain growth in anaerobic conditions, a crucial factor for the pathogen to establish infections within host environments. Molybdenum plays a critical role in pathogenesis as it forms an essential component of cofactors for molybdoenzymes. K. pneumoniae utilizes the ABC (ATP-Binding-Cassette) transporter encoded by the modABC operon for uptake of the group VI elements molybdenum and tungsten. In this study, we determined the X-ray crystal structures of both the molybdenum-free and molybdenum-bound substrate-binding protein (SBP) ModA from Klebsiella pneumoniae to 2.00 Å and 1.77 Å resolution respectively. ModA crystallizes in the space group P222 with a single monomer in one asymmetric unit. The purified protein remained soluble and specifically bound molybdate and tungstate with Kd values of 6.3 nM and 5.2 nM, respectively. Tungstate competes with molybdate by binding to ModA, resulting in enhanced antimicrobial activity. These data provide a starting point for structural and functional analyses of molybdate transport in K. pneumoniae.


Molybdenum , Periplasmic Binding Proteins , Klebsiella pneumoniae/metabolism , Bacterial Proteins/metabolism , Periplasmic Binding Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Protein Binding
8.
Sci Rep ; 13(1): 6605, 2023 04 24.
Article En | MEDLINE | ID: mdl-37095149

In Gram-negative bacteria, N-terminal lipidation is a signal for protein trafficking from the inner membrane (IM) to the outer membrane (OM). The IM complex LolCDE extracts lipoproteins from the membrane and moves them to the chaperone LolA. The LolA-lipoprotein complex crosses the periplasm after which the lipoprotein is anchored to the OM. In γ-proteobacteria anchoring is assisted by the receptor LolB, while a corresponding protein has not been identified in other phyla. In light of the low sequence similarity between Lol-systems from different phyla and that they may use different Lol components, it is crucial to compare representative proteins from several species. Here we present a structure-function study of LolA and LolB from two phyla: LolA from Porphyromonas gingivalis (phylum bacteroidota), and LolA and LolB from Vibrio cholerae (phylum proteobacteria). Despite large sequence differences, the LolA structures are very similar, hence structure and function have been conserved throughout evolution. However, an Arg-Pro motif crucial for function in γ-proteobacteria has no counterpart in bacteroidota. We also show that LolA from both phyla bind the antibiotic polymyxin B whereas LolB does not. Collectively, these studies will facilitate the development of antibiotics as they provide awareness of both differences and similarities across phyla.


Escherichia coli Proteins , Periplasmic Binding Proteins , Vibrio cholerae , Carrier Proteins/metabolism , Porphyromonas gingivalis/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Vibrio cholerae/metabolism , Periplasmic Binding Proteins/metabolism , Cell Membrane/metabolism , Protein Transport/physiology , Lipoproteins/metabolism , Bacterial Outer Membrane Proteins/metabolism
9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36835435

The function of chaperones is to correct or degrade misfolded proteins inside the cell. Classic molecular chaperones such as GroEL and DnaK have not been found in the periplasm of Yersinia pseudotuberculosis. Some periplasmic substrate-binding proteins could be bifunctional, such as OppA. Using bioinformatic tools, we try to elucidate the nature of the interactions between OppA and ligands from four proteins with different oligomeric states. Using the crystal structure of the proteins Mal12 alpha-glucosidase from Saccharomyces cerevisiae S288C, LDH rabbit muscle lactate dehydrogenase, EcoRI endonuclease from Escherichia coli and THG Geotrichum candidum lipase, a hundred models were obtained in total, including five different ligands from each enzyme with five conformations of each ligand. The best values for Mal12 stem from ligands 4 and 5, with conformation 5 for both; for LDH, ligands 1 and 4, with conformations 2 and 4, respectively; for EcoRI, ligands 3 and 5, with conformation 1 for both; and for THG, ligands 2 and 3, with conformation 1 for both. The interactions were analyzed with LigProt, and the length of the hydrogen bridges has an average of 2.8 to 3.0 Å. The interaction within the OppA pocket is energetically favored due to the formation of hydrogen bonds both of OppA and of the selected enzymes. The Asp 419 residue is important in these junctions.


Bacterial Proteins , Molecular Chaperones , Periplasmic Binding Proteins , Yersinia pseudotuberculosis , Animals , Rabbits , Bacterial Proteins/metabolism , Binding Sites , Carrier Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Ligands , Molecular Chaperones/metabolism , Periplasmic Binding Proteins/metabolism , Protein Binding , Yersinia pseudotuberculosis/metabolism
10.
Proc Natl Acad Sci U S A ; 120(6): e2218473120, 2023 02 07.
Article En | MEDLINE | ID: mdl-36716372

The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The Escherichia coli Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like Caulobacter vibrioides) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from C. vibrioides can complement the deletion of both LolA and LolB in E. coli, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of C. vibrioides LolA that is responsible for its bifunctionality. This knowledge enabled us to convert E. coli LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.


Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism
11.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36430829

The localization of lipoprotein (Lol) system is responsible for the transport of lipoproteins in the outer membrane (OM) of Vibrio parahaemolyticus. LolB catalyzes the last step in the Lol system, where lipoproteins are inserted into the OM. If the function of LolB is impeded, growth of V. parahaemolyticus is inhibited, due to lack of an intact OM barrier for protection against the external environment. Additionally, it becomes progressively harder to generate antimicrobial resistance (AMR). In this study, LolB was employed as the receptor for a high-throughput virtual screening from a natural compounds database. Compounds with higher glide score were selected for an inhibition assay against V. parahaemolyticus. It was found that procyanidin, stevioside, troxerutin and rutin had both exciting binding affinity with LolB in the micromolar range and preferable antibacterial activity in a concentration-dependent manner. The inhibition rates of 100 ppm were 87.89%, 86.2%, 91.39% and 83.71%, respectively. The bacteriostatic mechanisms of the four active compounds were explored further via fluorescence spectroscopy and molecular docking, illustrating that each molecule formed a stable complex with LolB via hydrogen bonds and pi-pi stacking interactions. Additionally, the critical sites for interaction with V. parahaemolyticus LolB, Tyr108 and Gln68, were also illustrated. This paper demonstrates the inhibition of LolB, thus, leading to antibacterial activity, and identifies LolB as a promising drug target for the first time. These compounds could be the basis for potential antibacterial agents against V. parahaemolyticus.


Escherichia coli Proteins , Periplasmic Binding Proteins , Vibrio parahaemolyticus , Escherichia coli Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Vibrio parahaemolyticus/metabolism , Escherichia coli/metabolism , Molecular Docking Simulation , Molecular Chaperones/metabolism , Lipoproteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
12.
Microbiol Spectr ; 10(6): e0267722, 2022 12 21.
Article En | MEDLINE | ID: mdl-36445153

In Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment. IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.


Corynebacterium glutamicum , Mycobacterium tuberculosis , Periplasmic Binding Proteins , Phosphorylation , Glutamic Acid/metabolism , Glutamine/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Ketoglutaric Acids/metabolism , Aspartic Acid/metabolism , Periplasmic Binding Proteins/metabolism , Protein Kinases/metabolism , Mycobacterium tuberculosis/genetics , Signal Transduction , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism
13.
Metallomics ; 14(11)2022 11 17.
Article En | MEDLINE | ID: mdl-36255398

Nickel is an essential micronutrient for the survival of many microbes. On account of the toxicity of nickel and its scarcity in the environment, microbes have evolved specific systems for uptaking and delivering nickel to enzymes. NikA, the solute binding protein for the ATP-binding cassette (ABC) importer NikABCDE, plays a vital role in the nickel homeostasis of Escherichia coli by selectively binding nickel over other metals in the metabolically complex periplasm. While the endogenous ligand for NikA is known to be the Ni(II)-(L-His)2 complex, the molecular basis by which NikA selectively binds Ni(II)-(L-His)2 is unclear, especially considering that NikA can bind multiple metal-based ligands with comparable affinity. Here we show that, regardless of its promiscuous binding activity, NikA preferentially interacts with Ni(II)-(L-His)2, even over other metal-amino acid ligands with an identical coordination geometry for the metal. Replacing both the Ni(II) and the L-His residues in Ni(II)-(L-His)2 compromises binding of the ligand to NikA, in part because these alterations affect the degree by which NikA closes around the ligand. Replacing H416, the only NikA residue that ligates the Ni(II), with other potential metal-coordinating amino acids decreases the binding affinity of NikA for Ni(II)-(L-His)2 and compromises uptake of Ni(II) into E. coli cells, likely due to altered metal selectivity of the NikA mutants. Together, the biochemical and in vivo studies presented here define key aspects of how NikA selects for Ni(II)-(L-His)2 over other metal complexes, and can be used as a reference for studies into the metal selectivity of other microbial solute binding proteins.


Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/metabolism , Periplasmic Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Nickel/metabolism , Ligands , ATP-Binding Cassette Transporters/metabolism , Metals/metabolism
14.
Sci Rep ; 12(1): 17647, 2022 10 21.
Article En | MEDLINE | ID: mdl-36271099

Numerous studies have shown how periplasmic binding proteins (PBPs) bind substrates with exquisite specificity, even distinguishing between sugar epimers and anomers, or structurally similar ions. Yet, marked substrate promiscuity is also a feature encoded in some PBPs. Except for three sub-Ångström crystal structures, there are no reports of hydrogen atom positions in the remaining (> 1000) PBP structures. The previous X-ray crystal structure of the maltodextrin periplasmic-binding protein from Thermotoga maritima (tmMBP) complexed with oligosaccharide showed a large network of interconnected water molecules stretching from one end of the substrate binding pocket to the other. These water molecules are positioned to form multiple hydrogen bonds, as well as forming interactions between the protein and substrate. Here we present the neutron crystal structure of tmMBP to a resolution of 2.1 Å. This is the first neutron crystal structure from the PBP superfamily and here we unambiguously identify the nature and orientation of the hydrogen bonding and water-mediated interactions involved in stabilizing a tetrasaccharide in the binding site. More broadly, these results demonstrate the conserved intricate mechanisms that underlie substrate-specificity and affinity in PBPs.


Periplasmic Binding Proteins , Periplasmic Binding Proteins/metabolism , Protein Conformation , Crystallography, X-Ray , Models, Molecular , Binding Sites , Hydrogen Bonding , Oligosaccharides/chemistry , Neutrons , Sugars , Water/metabolism , Hydrogen/metabolism , Protein Binding
15.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36077023

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Haemophilus parasuis , Periplasmic Binding Proteins , Animals , Cytokines/metabolism , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Periplasmic Binding Proteins/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
16.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Article En | MEDLINE | ID: mdl-36037338

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Escherichia coli Proteins , Periplasmic Binding Proteins , Protein Transport , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ligands , Lipoproteins/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Periplasm/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Protein Structure, Tertiary , Protein Transport/genetics
17.
Biophys J ; 121(11): 2046-2059, 2022 06 07.
Article En | MEDLINE | ID: mdl-35526093

To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which are transported into the periplasm via a specific porin. Previous observations have shown that, under various conditions, E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here, we present results from experiments and modeling suggesting that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits the range of dynamic sensing. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.


Escherichia coli Proteins , Periplasmic Binding Proteins , Bacterial Proteins/metabolism , Chemotaxis , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Maltose/metabolism , Maltose-Binding Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Porins/metabolism
18.
Biochemistry ; 61(4): 276-293, 2022 02 15.
Article En | MEDLINE | ID: mdl-35084821

Accurate assignment of protein function from sequence remains a fascinating and difficult challenge. The periplasmic-binding protein (PBP) superfamily present an interesting case of function prediction because they are both ubiquitous in prokaryotes and tend to diversify through gene duplication "explosions" that can lead to large numbers of paralogs in a genome. An engineered version of the moderately thermostable glucose-binding PBP from Escherichia coli has been used successfully as a reagentless fluorescent biosensor both in vitro and in vivo. To develop more robust sensors that meet the challenges of real-world applications, we report the discovery of thermostable homologues that retain a glucose-mediated conformationally coupled fluorescence response. Accurately identifying a glucose-binding PBP homologue among closely related paralogs is challenging. We demonstrate that a structure-based method that filters sequences by residues that bind glucose in an archetype structure is highly effective. Using fully sequenced bacterial genomes, we found that this filter reduced high paralog numbers to single hits in a genome, consistent with the accurate separation of glucose binding from other functions. We expressed engineered proteins for eight homologues, chosen to represent different degrees of sequence identity, and tested their glucose-mediated fluorescence responses. We accurately predicted the presence of glucose binding down to 31% sequence identity. We have also successfully identified suitable candidates for next-generation robust, fluorescent glucose sensors.


Biosensing Techniques/methods , Escherichia coli Proteins/metabolism , Glucose/metabolism , Periplasmic Binding Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Escherichia coli , Fluorescence , Fluorescent Dyes/metabolism , Humans , Protein Binding , Temperature
19.
J Biol Chem ; 298(1): 101445, 2022 01.
Article En | MEDLINE | ID: mdl-34822841

The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.


Copper , Escherichia coli Proteins , Escherichia coli , Operon , Periplasmic Binding Proteins , Chelating Agents/metabolism , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Structure-Activity Relationship
20.
Appl Environ Microbiol ; 88(2): e0211721, 2022 01 25.
Article En | MEDLINE | ID: mdl-34757821

Periplasmic binding proteins have been previously proclaimed as a general scaffold to design sensor proteins with new recognition specificities for nonnatural compounds. Such proteins can be integrated in bacterial bioreporter chassis with hybrid chemoreceptors to produce a concentration-dependent signal after ligand binding to the sensor cell. However, computationally designed new ligand-binding properties ignore the more general properties of periplasmic binding proteins, such as their periplasmic translocation, dynamic transition of open and closed forms, and interactions with membrane receptors. In order to better understand the roles of such general properties in periplasmic signaling behavior, we studied the subcellular localization of ribose-binding protein (RbsB) in Escherichia coli in comparison to a recently evolved set of mutants designed to bind 1,3-cyclohexanediol. As proxies for localization, we calibrated and deployed C-terminal end mCherry fluorescent protein fusions. Whereas RbsB-mCherry coherently localized to the periplasmic space and accumulated in (periplasmic) polar regions depending on chemoreceptor availability, mutant RbsB-mCherry expression resulted in high fluorescence cell-to-cell variability. This resulted in higher proportions of cells devoid of clear polar foci and of cells with multiple fluorescent foci elsewhere, suggesting poorer translocation, periplasmic autoaggregation, and mislocalization. Analysis of RbsB mutants and mutant libraries at different stages of directed evolution suggested overall improvement to more RbsB-wild-type-like characteristics, which was corroborated by structure predictions. Our results show that defects in periplasmic localization of mutant RbsB proteins partly explain their poor sensing performance. Future efforts should be directed to predicting or selecting secondary mutations outside computationally designed binding pockets, taking folding, translocation, and receptor interactions into account. IMPORTANCE Biosensor engineering relies on transcription factors or signaling proteins to provide the actual sensory functions for the target chemicals. Since for many compounds there are no natural sensory proteins, there is a general interest in methods that could unlock routes to obtaining new ligand-binding properties. Bacterial periplasmic binding proteins (PBPs) form an interesting family of proteins to explore for this purpose, because there is a large natural variety suggesting evolutionary trajectories to bind new ligands. PBPs are conserved and amenable to accurate computational binding pocket predictions. However, studying ribose-binding protein in Escherichia coli, we discovered that designed variants have defects in their proper localization in the cell, which can impair appropriate sensor signaling. This indicates that functional sensing capacity of PBPs cannot be obtained solely through computational design of the ligand-binding pocket but must take other properties of the protein into account, which are currently very difficult to predict.


Escherichia coli Proteins , Periplasmic Binding Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Ligands , Mutant Proteins/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Ribose/metabolism
...