Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.977
1.
Pharmacogenomics J ; 24(3): 16, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778046

Pharmacogenomics (PGx) research and applications are of utmost relevance in Lebanon considering its population genetic diversity. Moreover, as a country with regional leadership in medicine and higher education, Lebanon holds a strong potential in contributing to PGx research and clinical implementation. In this manuscript, we first review and evaluate the available PGx research conducted in Lebanon, then describe the current status of PGx practice in Lebanon while reflecting on the local and regional challenges, and highlighting areas for action, and opportunities to move forward. We specifically expand on the status of PGx at the American University of Beirut Faculty of Medicine and Medical Center as a case study and guide for the further development of local and regional comprehensive PGx research, teaching, and clinical implementation programs. We also delve into the status of PGx knowledge and education, and prospects for further advancement such as with online courses and certificates.


Pharmacogenetics , Lebanon , Humans , Pharmacogenetics/education , Pharmacogenetics/methods , Pharmacogenetics/trends , Precision Medicine/methods
2.
Article Ru | MEDLINE | ID: mdl-38640209

The article considers issues of implementation into clinical practice the principles of 5P medicine in its part of individualization of therapeutic tactics considering genetic characteristics of patients. The analysis of studies concerning influence of allelic variations on metabolism, safety and tolerance of the most often prescribed medicinal preparations was implemented. The main assumptions of pharmacogenomics were considered. Despite broad perspective of applying obtained data in clinical practice, there are a number of unresolved problems related to accessibility of genetic testing to population, ambiguity of approaches to interpretation of obtaining results, ethical issues and legal regulation.


Pharmacogenetics , Precision Medicine , Humans , Pharmacogenetics/methods , Precision Medicine/methods , Genetic Testing
4.
Genes (Basel) ; 15(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38674402

In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.


Antineoplastic Agents , Biological Products , Neoplasms , Pharmacogenetics , Precision Medicine , Precision Medicine/methods , Humans , Biological Products/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Pharmacogenetics/methods , Mutation
5.
Genes (Basel) ; 15(4)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38674455

The nomenclature of star alleles has been widely used in pharmacogenomics to enhance treatment outcomes, predict drug response variability, and reduce adverse reactions. However, the discovery of numerous rare functional variants through genome sequencing introduces complexities into the star-allele system. This study aimed to assess the nature and impact of the rapid discovery of numerous rare functional variants in the traditional haplotype-based star-allele system. We developed a new method to construct haplogroups, representing a common ancestry structure, by iteratively excluding rare and functional variants of the 25 representative pharmacogenes using the 2504 genomes from the 1000 Genomes Project. In total, 192 haplogroups and 288 star alleles were identified, with an average of 7.68 ± 4.2 cross-ethnic haplogroups per gene. Most of the haplogroups (70.8%, 136/192) were highly aligned with their corresponding classical star alleles (VI = 1.86 ± 0.78), exhibiting higher genetic diversity than the star alleles. Approximately 41.3% (N = 119) of the star alleles in the 2504 genomes did not belong to any of the haplogroups, and most of them (91.3%, 105/116) were determined by a single variant according to the allele-definition table provided by CPIC. These functional single variants had low allele frequency (MAF < 1%), high evolutionary conservation, and variant deleteriousness, which suggests significant negative selection. It is suggested that the traditional haplotype-based naming system for pharmacogenetic star alleles now needs to be adjusted by balancing both traditional haplotyping and newly emerging variant-sequencing approaches to reduce naming complexity.


Alleles , Haplotypes , Terminology as Topic , Humans , Pharmacogenetics/methods , Gene Frequency , Genetic Variation
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673849

In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of ß-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.


Anemia, Sickle Cell , Pharmacogenetics , beta-Thalassemia , Humans , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/drug therapy , beta-Thalassemia/genetics , beta-Thalassemia/drug therapy , Pharmacogenetics/methods , Fetal Hemoglobin/genetics , gamma-Globins/genetics , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology
7.
Drug Metab Dispos ; 52(6): 467-475, 2024 May 16.
Article En | MEDLINE | ID: mdl-38575185

In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion. Here we present an update on these burgeoning fields, providing an overview of their current status and illuminating potential future directions. SIGNIFICANCE STATEMENT: There is very rapid development in the area of pharmacogenomics and in vitro systems for predicting drug pharmacokinetics and risk for adverse drug reactions. We provide an update of the current status of pharmacogenomics and developed in vitro systems on these aspects aimed to achieve a better personalized pharmacotherapy.


Drug Development , Drug-Related Side Effects and Adverse Reactions , Pharmacogenetics , Precision Medicine , Humans , Precision Medicine/methods , Drug Development/methods , Pharmacogenetics/methods , Drug-Related Side Effects and Adverse Reactions/genetics , Drug-Related Side Effects and Adverse Reactions/prevention & control , Genetic Markers , Pharmaceutical Preparations/metabolism , Animals
8.
Sr Care Pharm ; 39(4): 151-158, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38528333

The objective of this aims to demonstrate the advantage of a pharmacogenomics (PGx)-informed medication review in mitigating adverse drug events (ADEs) and optimizing therapeutic outcomes. PGx testing and PGx-informed medication reviews assist in mitigating ADEs. PGx testing was performed on a 68-year-old male presenting with uncontrolled chronic pain. The PGx results highlighted a drug-gene interaction, aiding in identification of the increased risk of statin-associated muscle symptoms (SAMS) attributing to uncontrolled chronic pain. This patient case report illustrates how incorporating PGx results can help improve chronic pain and mitigate ADEs, such as SAMS.


Chronic Pain , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Male , Humans , Aged , Pharmacogenetics/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Muscles
9.
Pharmacogenomics J ; 24(2): 10, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499549

Chronic kidney disease (CKD) is a global health issue. Kidney failure patients may undergo a kidney transplantation (KTX) and prescribed an immunosuppressant medication i.e., tacrolimus. Tacrolimus' efficacy and toxicity varies among patients. This study investigates the cost-utility of pharmacogenomics (PGx) guided tacrolimus treatment compared to the conventional approach in Austrian patients undergone KTX, participating in the PREPARE UPGx study. Treatment's effectiveness was determined by mean survival, and utility values were based on a Visual Analog Scale score. Incremental Cost-Effectiveness Ratio was also calculated. PGx-guided treatment arm was found to be cost-effective, resulting in reduced cost (3902 euros less), 6% less hospitalization days and lower risk of adverse drug events compared to the control arm. The PGx-guided arm showed a mean 0.900 QALYs (95% CI: 0.862-0.936) versus 0.851 QALYs (95% CI: 0.814-0.885) in the other arm. In conclusion, PGx-guided tacrolimus treatment represents a cost-saving option in the Austrian healthcare setting.


Kidney Transplantation , Tacrolimus , Humans , Tacrolimus/therapeutic use , Cost-Benefit Analysis , Pharmacogenetics/methods , Kidney Transplantation/adverse effects , Austria , Transplant Recipients , Immunosuppressive Agents/therapeutic use
10.
Pharmacogenomics ; 25(4): 207-216, 2024 Mar.
Article En | MEDLINE | ID: mdl-38506331

Aim: The study aim was to determine caregiver interest and planned utilization of pharmacogenomic (PGx) results for their child with Prader-Willi syndrome. Methods: Caregivers consented to PGx testing for their child and completed a survey before receiving results. Results: Of all caregivers (n = 48), 93.8% were highly interested in their child's upcoming PGx results. Most (97.9%) planned to share results with their child's medical providers. However, only 47.9% of caregivers were confident providers would utilize the PGx results. Conclusion: Caregivers are interested in utilizing PGx but are uncertain providers will use these results in their child's care. More information about provider comfort with PGx utilization is needed to understand how PGx education would benefit providers and ultimately patients with PGx results.


Pharmacogenetics , Prader-Willi Syndrome , Child , Humans , Pharmacogenetics/methods , Caregivers , Prader-Willi Syndrome/drug therapy , Prader-Willi Syndrome/genetics , Surveys and Questionnaires , Pharmacogenomic Testing
11.
Genes (Basel) ; 15(3)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38540411

BACKGROUND: The advancement of next-generation sequencing (NGS) technologies provides opportunities for large-scale Pharmacogenetic (PGx) studies and pre-emptive PGx testing to cover a wide range of genotypes present in diverse populations. However, NGS-based PGx testing is limited by the lack of comprehensive computational tools to support genetic data analysis and clinical decisions. METHODS: Bioinformatics utilities specialized for human genomics and the latest cloud-based technologies were used to develop a bioinformatics pipeline for analyzing the genomic sequence data and reporting PGx genotypes. A database was created and integrated in the pipeline for filtering the actionable PGx variants and clinical interpretations. Strict quality verification procedures were conducted on variant calls with the whole genome sequencing (WGS) dataset of the 1000 Genomes Project (G1K). The accuracy of PGx allele identification was validated using the WGS dataset of the Pharmacogenetics Reference Materials from the Centers for Disease Control and Prevention (CDC). RESULTS: The newly created bioinformatics pipeline, Pgxtools, can analyze genomic sequence data, identify actionable variants in 13 PGx relevant genes, and generate reports annotated with specific interpretations and recommendations based on clinical practice guidelines. Verified with two independent methods, we have found that Pgxtools consistently identifies variants more accurately than the results in the G1K dataset on GRCh37 and GRCh38. CONCLUSIONS: Pgxtools provides an integrated workflow for large-scale genomic data analysis and PGx clinical decision support. Implemented with cloud-native technologies, it is highly portable in a wide variety of environments from a single laptop to High-Performance Computing (HPC) clusters and cloud platforms for different production scales and requirements.


Pharmacogenetics , Pharmacogenomic Testing , Humans , Pharmacogenetics/methods , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Computational Biology
13.
Pharmacogenet Genomics ; 34(4): 130-134, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38359167

The use of genome-wide genotyping arrays in pharmacogenomics (PGx) research and clinical implementation applications is increasing but it is unclear which arrays are best suited for these applications. Here, we conduct a comparative coverage analysis of PGx alleles included on genome-wide genotyping arrays, with an emphasis on alleles in genes with PGx-based prescribing guidelines. Genomic manifest files for seven arrays including the Axiom Precision Medicine Diversity Array (PMDA), Axiom PMDA Plus, Axiom PangenomiX, Axiom PangenomiX Plus, Infinium Global Screening Array, Infinium Global Diversity Array (GDA) and Infinium GDA with enhanced PGx (GDA-PGx) Array, were evaluated for coverage of 523 star alleles across 19 pharmacogenes included in prescribing guidelines developed by the Clinical Pharmacogenetic Implementation Consortium and Dutch Pharmacogenomics Working Group. Specific attention was given to coverage of the Association of Molecular Pathology's Tier 1 and Tier 2 allele sets for CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NUDT15, TPMT and VKORC1 . Coverage of the examined PGx alleles was highest for the Infinium GDA-PGx (88%), Axiom PangenomiX Plus (77%), Axiom PangenomiX (72%) and Axiom PMDA Plus (70%). Three arrays (Infinium GDA-PGx, Axiom PangenomiX Plus and Axiom PMDA Plus) fully covered the Tier 1 alleles and the Axiom PangenomiX array provided full coverage of Tier 2 alleles. In conclusion, PGx allele coverage varied by gene and array. A superior array for all PGx applications was not identified. Future comparative analyses of genotype data produced by these arrays are needed to determine the robustness of the reported coverage estimates.


Alleles , Pharmacogenetics , Humans , Pharmacogenetics/methods , Genotype , Genotyping Techniques/methods , Genome-Wide Association Study/methods , Genome, Human/genetics , Oligonucleotide Array Sequence Analysis , Precision Medicine/methods
14.
J Am Heart Assoc ; 13(5): e030058, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38390792

BACKGROUND: Genetic-guided pharmacotherapy (PGx) is not recommended in clinical guidelines for coronary artery disease (CAD). We aimed to examine the extent and quality of evidence from economic evaluations of PGx in CAD and to identify variables influential in changing conclusions on cost-effectiveness. METHODS AND RESULTS: From systematic searches across 6 databases, 2 independent reviewers screened, included, and rated the methodological quality of economic evaluations of PGx testing to guide pharmacotherapy for patients with CAD. Of 35 economic evaluations included, most were model-based cost-utility analyses alone, or alongside cost-effectiveness analyses of PGx testing to stratify patients into antiplatelets (25/35), statins (2/35), pain killers (1/35), or angiotensin-converting enzyme inhibitors (1/35) to predict CAD risk (8/35) or to determine the coumadin doses (1/35). To stratify patients into antiplatelets (96/151 comparisons with complete findings of PGx versus non-PGx), PGx was more effective and more costly than non-PGx clopidogrel (28/43) but less costly than non-PGx prasugrel (10/15) and less costly and less effective than non-PGx ticagrelor (22/25). To predict CAD risk (51/151 comparisons), PGx using genetic risk scores was more effective and less costly than clinical risk score (13/17) but more costly than no risk score (16/19) or no treatment (9/9). The remaining comparisons were too few to observe any trend. Mortality risk was the most common variable (47/294) changing conclusions. CONCLUSIONS: Economic evaluations to date found PGx to stratify patients with CAD into antiplatelets or to predict CAD risk to be cost-effective, but findings varied based on the non-PGx comparators, underscoring the importance of considering local practice in deciding whether to adopt PGx.


Coronary Artery Disease , Humans , Cost-Benefit Analysis , Coronary Artery Disease/drug therapy , Coronary Artery Disease/genetics , Prasugrel Hydrochloride/therapeutic use , Clopidogrel , Warfarin , Pharmacogenetics/methods
15.
Pharmacogenomics J ; 24(1): 1, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38216550

Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.


Antimetabolites, Antineoplastic , Dihydrouracil Dehydrogenase (NADP) , Pharmacogenomic Testing , Humans , Antimetabolites, Antineoplastic/adverse effects , Biomarkers , Dihydrouracil Dehydrogenase (NADP)/genetics , Fluorouracil/adverse effects , Genotype , Pharmacogenetics/methods , Pharmacogenomic Testing/methods
16.
J Appl Lab Med ; 9(1): 50-60, 2024 01 03.
Article En | MEDLINE | ID: mdl-38167765

BACKGROUND: Pharmacogenetics or pharmacogenomics (PGx) is the study of the role of inherited or acquired sequence change in drug response. With the rapid evolution of molecular techniques, bioinformatic tools, and increased throughput of functional genomic studies, the discovery of PGx associations and clinical implementation of PGx test results have now moved beyond a handful variants in single pharmacogenes and multi-gene panels that interrogate a few pharmacogenes to whole-exome and whole-genome scales. Although some laboratories have adopted next-generation sequencing (NGS) as a testing platform for PGx and other molecular tests, most clinical laboratories that offer PGx tests still use targeted genotyping approaches. CONTENT: This article discusses primarily the technical considerations for clinical laboratories to develop NGS-based PGx tests including whole-genome and whole-exome sequencing analyses and highlights the challenges and opportunities in test design, content selection, bioinformatic pipeline for PGx allele and diplotype assignment, rare variant classification, reporting, and briefly touches a few additional areas that are important for successful clinical implementation of PGx results. SUMMARY: The accelerated speed of technology development associated with continuous cost reduction and enhanced ability to interrogate complex genome regions makes it inevitable for most, if not all, clinical laboratories to transition PGx testing to an NGS-based platform in the near future. It is important for laboratories and relevant professional societies to recognize both the potential and limitations of NGS-based PGx profiling, and to work together to develop a standard and consistent practice to maximize the variant or allele detection rate and utility of PGx testing.


Computational Biology , Pharmacogenetics , Humans , Pharmacogenetics/methods , Alleles , High-Throughput Nucleotide Sequencing/methods
17.
Expert Rev Clin Pharmacol ; 17(3): 213-223, 2024 Mar.
Article En | MEDLINE | ID: mdl-38247431

INTRODUCTION: The technological advances of sequencing methods during the past 20 years have fuelled the generation of large amounts of sequencing data that comprise common variations, as well as millions of rare and personal variants that would not be identified by conventional genotyping. While comprehensive sequencing is technically feasible, its clinical utility for guiding personalized treatment decisions remains controversial. AREAS COVERED: We discuss the opportunities and challenges of comprehensive sequencing compared to targeted genotyping for pharmacogenomic applications. Current pharmacogenomic sequencing panels are heterogeneous and clinical actionability of the included genes is not a major focus. We provide a current overview and critical discussion of how current studies utilize sequencing data either retrospectively from biobanks, databases or repurposed diagnostic sequencing, or prospectively using pharmacogenomic sequencing. EXPERT OPINION: While sequencing-based pharmacogenomics has provided important insights into genetic variations underlying the safety and efficacy of a multitude pharmacological treatments, important hurdles for the clinical implementation of pharmacogenomic sequencing remain. We identify gaps in the interpretation of pharmacogenetic variants, technical challenges pertaining to complex loci and variant phasing, as well as unclear cost-effectiveness and incomplete reimbursement. It is critical to address these challenges in order to realize the promising prospects of pharmacogenomic sequencing.


Decision Support Systems, Clinical , Pharmacogenetics , Humans , Pharmacogenetics/methods , Precision Medicine/methods , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods
18.
Pharmacogenomics ; 25(2): 79-95, 2024 Jan.
Article En | MEDLINE | ID: mdl-38288576

An increasing number of economic evaluations are published annually investigating the economic effectiveness of pharmacogenomic (PGx) testing. This work was designed to provide a comprehensive summary of the available utility methods used in cost-effectiveness/cost-utility analysis studies of PGx interventions. A comprehensive review was conducted to identify economic analysis studies using a utility valuation method for PGx testing. A total of 82 studies met the inclusion criteria. A majority of studies were from the USA and used the EuroQol-5D questionnaire, as the utility valuation method. Cardiovascular disorders was the most studied therapeutic area while discrete-choice studies mainly focused on patients' willingness to undergo PGx testing. Future research in applying other methodologies in PGx economic evaluation studies would improve the current research environment and provide better results.


Pharmacogenetics , Pharmacogenomic Testing , Humans , Cost-Benefit Analysis , Pharmacogenetics/methods
19.
Expert Rev Clin Pharmacol ; 17(1): 1-10, 2024 Jan.
Article En | MEDLINE | ID: mdl-38088171

INTRODUCTION: The implementation of pharmacogenetic analysis within clinical trials faces methodological, ethical, and regulatory challenges, as well as tackling the difficulty in obtaining actionable information with a sufficient level of evidence to enable its integration into routine clinical practice. AREAS COVERED: We discuss the current status of pharmacogenetics integration in clinical trials, underscore the associated challenges, and make some suggestions on the aspects to address in any clinical trial including a pharmacogenetic evaluation. We conducted a literature review, thoroughly reviewed the applicable regulations and available guidelines, and assessed the application dossiers submitted for evaluation to the Ethics committee of Hospital La Paz (Madrid, Spain) to extract information related to inclusion of pharmacogenetics evaluations. EXPERT OPINION: The integration of pharmacogenetics into clinical trials is becoming increasingly common. However, several regulatory, methodological and ethical aspects involved are insufficiently addressed. There is a need for specific and transparent guidelines that establish unified and compliant criteria for methodology, proper handling of samples in compliance with regulations, and the protection of data privacy and confidentiality. Participants should receive complete and appropriate information regarding the purpose, handling, storage, and transfer of their samples and data, and should have the right to decide about their processing.


Confidentiality , Pharmacogenetics , Humans , Pharmacogenetics/methods , Spain , Clinical Trials as Topic
20.
Genet Med ; 26(4): 101056, 2024 Apr.
Article En | MEDLINE | ID: mdl-38153010

PURPOSE: Combinatorial pharmacogenetic (PGx) panels intended to aid psychiatric prescribing are available to clinicians. Here, we evaluated the documentation of PGx panel results and subsequent prescribing patterns within a tertiary health care system. METHODS: We performed a query of psychiatry service note text in our electronic health record using 71 predefined PGx terms. Patients who underwent combinatorial PGx testing were identified, and documentation of test results was analyzed. Prescription data following testing were examined for the frequency of prescriptions influenced by genes on the panel along with the medical specialties involved. RESULTS: A total of 341 patients received combinatorial PGx testing, and documentation of results was found to be absent or incomplete for 198 patients (58%). The predominant method of documentation was through portable document formats uploaded to the electronic health record's "Media" section. Among patients with at least 1 year of follow-up, a large majority (194/228, 85%) received orders for medications affected by the tested genes, including 132 of 228 (58%) patients receiving at least 1 non-psychiatric medication influenced by the test results. CONCLUSION: Results from combinatorial PGx testing were poorly documented. Medications affected by these results were often prescribed after testing, highlighting the need for discrete results and clinical decision support.


Decision Support Systems, Clinical , Medicine , Humans , Pharmacogenetics/methods , Drug Prescriptions , Electronic Health Records
...