Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 189(3): 1345-1362, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35385114

RESUMEN

Triacylglycerols (TAGs) are the main storage lipids in photosynthetic organisms under stress. In the oleaginous alga Nannochloropsis oceanica, while multiple acyl CoA:diacylglycerol (DAG) acyltransferases (NoDGATs) are involved in TAG production, the role of the unique phospholipid:DAG acyltransferase (NoPDAT) remains unknown. Here, we performed a functional complementation assay in TAG-deficient yeast (Saccharomyces cerevisiae) and an in vitro assay to probe the acyltransferase activity of NoPDAT. Subcellular localization, overexpression, and knockdown (KD) experiments were also conducted to elucidate the role of NoPDAT in N. oceanica. NoPDAT, residing at the outermost plastid membrane, does not phylogenetically fall into the clades of algae or plants and uses phosphatidylethanolamine (PE) and phosphatidylglycerol with 16:0, 16:1, and 18:1 at position sn-2 as acyl-donors in vivo. NoPDAT KD, not triggering any compensatory mechanism via DGATs, led to an ∼30% decrease of TAG content, accompanied by a vast accumulation of PEs rich in 16:0, 16:1, and 18:1 fatty acids (referred to as "LU-PE") that was positively associated with CO2 availability. We conclude that the NoPDAT pathway is parallel to and independent of the NoDGAT pathway for oil production. LU-PE can serve as an alternative carbon sink for photosynthetically assimilated carbon in N. oceanica when PDAT-mediated TAG biosynthesis is compromised or under stress in the presence of high CO2 levels.


Asunto(s)
Aciltransferasas , Microalgas , Fosfatidiletanolaminas , Aciltransferasas/genética , Aciltransferasas/metabolismo , Dióxido de Carbono/metabolismo , Secuestro de Carbono/genética , Secuestro de Carbono/fisiología , Diacilglicerol O-Acetiltransferasa/metabolismo , Microalgas/genética , Microalgas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1863(8): 183626, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901442

RESUMEN

Recently, we reported that a ternary lipid bilayer comprising phosphatidylethanolamine (PE), phosphatidylcholine (PC), which were both derived from chicken egg, and cholesterol (Chol) generates microdomains that function as specific fusion sites for proteoliposomes. Chol-induced microdomain formation in a completely miscible lipid bilayer is an exceptional phenomenon. Numerous studies have elucidated the formation of domains in liquid ordered (Lo) and liquid disordered (Ld) phases of ternary bilayers, which comprise two partially miscible lipids and Chol. Herein, we investigated the composition and mechanism of formation of these unique microdomains in supported lipid bilayers (SLBs) using a fluorescence microscope and an atomic force microscope (AFM). We prepared ternary SLBs using egg-derived PC (eggPC), Chol and three different types of PE: egg-derived PE, 1-palmitoyl-2-oleoyl-PE, and 1,2-didocosahexaenoyl-PE (diDHPE). Fluorescence microscopy observations revealed that fluid and continuous SLBs were formed at PE concentrations (CPE) of ≥6 mol%. Fluorescence recovery after photobleaching measurement revealed that the microdomain was more fluid than the surrounding region that showed typical diffusion coefficient of the Lo phase. The microdomains were observed as depressions in the AFM topographies. Their area fraction (θ) increased with CPE, and diDHPE produced a significantly large θ among the three PEs. The microdomains in the PE+eggPC+Chol-SLBs were rich in polyunsaturated PE and were in the Ld-like phase. Associating eggPC and Chol caused polyunsaturated PE to segregate, resulting in a microdomain formation by conferring the umbrella effect on Chol, entropic effect of disordered acyl chains, and π-π interactions in the hydrophobic core.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Colesterol/genética , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Microscopía Fluorescente , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/genética , Fosfolípidos/química , Fosfolípidos/genética
3.
J Biol Chem ; 296: 100315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33485966

RESUMEN

Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.


Asunto(s)
Adenosina Trifosfatasas/genética , Membrana Dobles de Lípidos/metabolismo , Toxoplasma/genética , Toxoplasmosis/genética , Adenosina Trifosfatasas/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citometría de Flujo , Glicerofosfolípidos/metabolismo , Aparato de Golgi/química , Aparato de Golgi/enzimología , Humanos , Membrana Dobles de Lípidos/química , Lípidos/química , Lípidos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
4.
Nat Commun ; 11(1): 4317, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859896

RESUMEN

Lipid membranes, nucleic acids, proteins, and metabolism are essential for modern cellular life. Synthetic systems emulating the fundamental properties of living cells must therefore be built upon these functional elements. In this work, phospholipid-producing enzymes encoded in a synthetic minigenome are cell-free expressed within liposome compartments. The de novo synthesized metabolic pathway converts precursors into a variety of lipids, including the constituents of the parental liposome. Balanced production of phosphatidylethanolamine and phosphatidylglycerol is realized, owing to transcriptional regulation of the activity of specific genes combined with a metabolic feedback mechanism. Fluorescence-based methods are developed to image the synthesis and membrane incorporation of phosphatidylserine at the single liposome level. Our results provide experimental evidence for DNA-programmed membrane synthesis in a minimal cell model. Strategies are discussed to alleviate current limitations toward effective liposome growth and self-reproduction.


Asunto(s)
Liposomas/metabolismo , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/genética , Fosfatidilgliceroles/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo , Proteómica
5.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32269127

RESUMEN

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicación Viral/genética , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosomas/metabolismo , Regulación de la Expresión Génica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/metabolismo , Células Vegetales/metabolismo , Células Vegetales/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Esteroles/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Tombusvirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
6.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32303746

RESUMEN

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.


Asunto(s)
Proteínas de la Membrana/genética , Fosfatidilserinas/genética , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Saccharomyces cerevisiae/genética , 1-Fosfatidilinositol 4-Quinasa/genética , Transporte Biológico/genética , Metabolismo de los Lípidos/genética , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 295(13): 4124-4133, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221031

RESUMEN

An early exposure to lipid biochemistry in the laboratory of Konrad Bloch resulted in a fascination with the biosynthesis, structures, and functions of bacterial lipids. The discovery of plasmalogens (1-alk-1'-enyl, 2-acyl phospholipids) in anaerobic Gram-positive bacteria led to studies on the physical chemistry of these lipids and the cellular regulation of membrane lipid polymorphism in bacteria. Later studies in several laboratories showed that the formation of the alk-1-enyl ether bond involves an aerobic process in animal cells and thus is fundamentally different from that in anaerobic organisms. Our work provides evidence for an anaerobic process in which plasmalogens are formed from their corresponding diacyl lipids. Studies on the roles of phospholipases in Listeria monocytogenes revealed distinctions between its phospholipases and those previously discovered in other bacteria and showed how the Listeria enzymes are uniquely fitted to the intracellular lifestyle of this significant human pathogen.


Asunto(s)
Anaerobiosis/genética , Lípidos/genética , Plasmalógenos/metabolismo , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Lípidos/biosíntesis , Lípidos/química , Fosfatidiletanolaminas/biosíntesis , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plasmalógenos/química , Plasmalógenos/genética
8.
Biochem Pharmacol ; 166: 192-202, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31129050

RESUMEN

Duration of gene silencing due to the short-term silencing effects induced by exogenous siRNA have limited the therapeutic applications of RNAi and the development of RNAi-based therapeutics. We here generated Eg5 shRNA-expressing plasmids using the inverted terminal repeats (ITRs) sequences to produce Eg5 hairpin RNA under the control of U6 promoter. Using PEGylated DC-Chol/DOPE cationic liposomes, we demonstrated that a single systemic administration of Eg5 shRNA-expressing plasmid/liposome lipoplexes induced the long-term Eg5 silencing in the tumor sites of tumor-bearing mice, and ultimately lead to more sustained anticancer effects than standard synthetic siEg5/liposome lipoplexes. This non-viral Eg5 shRNA expression system had no risk of immunogenicity anticipated in the use of viral vectors, and could reduce the potential of off-target effects by scaling down the administration dose of RNAi therapeutics in patient. Therefore, the sustainable shRNA expression properties in the tumor sites suggest an efficient strategy to overcome the limitations caused by chemically synthesized siRNA methods such as short-term silencing effects and off-target effects. Herein, this study provides a non-viral silencing strategy for inducing long-term Eg5 silencing in vivo and suggests the great potential of Eg5 shRNA-expressing lipoplexes as a DNA-based RNAi therapeutics for cancer treatment.


Asunto(s)
Colesterol/análogos & derivados , Silenciador del Gen/fisiología , Cinesinas/biosíntesis , Fosfatidiletanolaminas/biosíntesis , Plásmidos/biosíntesis , ARN Interferente Pequeño/biosíntesis , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Colesterol/administración & dosificación , Colesterol/biosíntesis , Colesterol/genética , Femenino , Expresión Génica , Silenciador del Gen/efectos de los fármacos , Técnicas de Transferencia de Gen , Humanos , Cinesinas/administración & dosificación , Cinesinas/genética , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Fosfatidiletanolaminas/administración & dosificación , Fosfatidiletanolaminas/genética , Plásmidos/administración & dosificación , Plásmidos/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
J Proteome Res ; 18(3): 1133-1144, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30706713

RESUMEN

Hyperlipidemia, characterized by high serum lipids, is a risk factor for cardiovascular disease. Recent studies have identified an important role for celastrol, a proteasome inhibitor isolated from Tripterygium wilfordii Hook. F., in obesity-related metabolic disorders. However, the exact influences of celastrol on lipid metabolism remain largely unknown. Celastrol inhibited the terminal differentiation of 3T3-L1 adipocytes and decreased the levels of triglycerides in wild-type mice. Lipidomics analysis revealed that celastrol increased the metabolism of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs). Further, celastrol reversed the tyloxapol-induced hyperlipidemia induced associated with increased plasma LPCs, PCs, SMs, and ceramides (CMs). Among these lipids, LPC(16:0), LPC(18:1), PC(22:2/15:0), and SM(d18:1/22:0) were also decreased by celastrol in cultured 3T3-L1 adipocytes, mice, and tyloxapol-treated mice. The mRNAs encoded by hepatic genes associated with lipid synthesis and catabolism, including Lpcat1, Pld1, Smpd3, and Sptc2, were altered in tyloxapol-induced hyperlipidemia, and significantly recovered by celastrol treatment. The effect of celastrol on lipid metabolism was significantly reduced in Fxr-null mice, resulting in decreased Cers6 and Acer2 mRNAs compared to wild-type mice. These results establish that FXR was responsible in part for the effects of celastrol in controlling lipid metabolism and contributing to the recovery of aberrant lipid metabolism in obesity-related metabolic disorders.


Asunto(s)
Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Triterpenos/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperlipidemias/inducido químicamente , Hiperlipidemias/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisofosfatidilcolinas/genética , Ratones , Triterpenos Pentacíclicos , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Fosfolipasa D/genética , Polietilenglicoles/toxicidad , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/genética
10.
J Biol Chem ; 293(45): 17593-17605, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30237174

RESUMEN

Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by ∼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.


Asunto(s)
Cardiolipinas/biosíntesis , Fosfatidiletanolaminas/biosíntesis , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/genética , Células HeLa , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfatidiletanolaminas/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA