Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.856
Filtrar
2.
Elife ; 122024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831696

RESUMEN

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Asunto(s)
Autofagosomas , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Autofagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Humanos , Simulación de Dinámica Molecular , Autofagia/fisiología
3.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898014

RESUMEN

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autofagosomas , Autofagia , Proteínas de Unión al Calcio , Complejos de Clasificación Endosomal Requeridos para el Transporte , Arabidopsis/metabolismo , Arabidopsis/genética , Autofagosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Fosfatos de Fosfatidilinositol/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Vacuolas/metabolismo , Separación de Fases
4.
Nat Commun ; 15(1): 5227, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898033

RESUMEN

Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.


Asunto(s)
Microscopía por Crioelectrón , Endosomas , Fosfatos de Fosfatidilinositol , Endosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fusión de Membrana , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo , Animales , Lisosomas/metabolismo
5.
Virulence ; 15(1): 2350893, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38725096

RESUMEN

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Lisosomas , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol , Canales de Potencial de Receptor Transitorio , Vacuolas , Animales , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/genética , Células HeLa , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fiebre Q/microbiología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Vacuolas/microbiología , Vacuolas/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805272

RESUMEN

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Asunto(s)
Fusión Celular , Mioblastos , Fosfatos de Fosfatidilinositol , Podosomas , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Podosomas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Desarrollo de Músculos/fisiología
7.
Curr Opin Cell Biol ; 88: 102372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776601

RESUMEN

Phosphoinositide 3-kinases regulate many cellular functions, including migration, growth, proliferation, and cell survival. Early studies equated the inhibition of Class I PI3Ks with loss of; phosphatidylinositol 3,4,5-trisphosphate (PIP3), but over time, it was realised that these; treatments also depleted phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In recent years, the; use of better tools and an improved understanding of its metabolism have allowed for the; identification of specific roles of PI(3,4)P2. This includes the production of PI(3,4)P2 and the; activation of its effector Akt2 in response to growth factor signalling. In contrast, a lysosomal pool of PI(3,4)P2 is a negative regulator of mTORC1 during growth factor deprivation. A growing body of literature also demonstrates that PI(3,4)P2 controls many dynamic plasmalemmal processes. The significance of PI(3,4)P2 in cell biology is increasingly evident.


Asunto(s)
Fosfatos de Fosfatidilinositol , Transducción de Señal , Humanos , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lisosomas/metabolismo
8.
Sci Signal ; 17(838): eadp3504, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805585

RESUMEN

The Hippo pathway blocks epithelial-mesenchymal transition and metastasis in cancer mediated by the transcriptional coactivator YAP. In this issue of Science Signaling, Palamiuc et al. demonstrate that phosphatidylinositol 5-phosphate (PI5P) enhances Hippo pathway activation and that simultaneously the Hippo pathway initiates a positive feedback loop by inhibiting the conversion of PI5P into PIP2.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Fosfatos de Fosfatidilinositol , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Vía de Señalización Hippo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
Bioessays ; 46(6): e2400038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724256

RESUMEN

Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double-membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER-associated omegasomes, characterized by their distinctive omega-shaped structure and accumulation of phosphatidylinositol 3-phosphate (PI3P), play a pivotal role in autophagosome formation. Omegasomes are thought to serve as platforms for phagophore assembly by recruiting essential proteins such as DFCP1/ZFYVE1 and facilitating lipid transfer to expand the phagophore. Despite the critical importance of phagophore biogenesis, many aspects remain poorly understood, particularly the complete range of proteins involved in omegasome dynamics, and the detailed mechanisms of lipid transfer and membrane contact site formation.


Asunto(s)
Autofagosomas , Autofagia , Retículo Endoplásmico , Fosfatos de Fosfatidilinositol , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Animales , Fosfatos de Fosfatidilinositol/metabolismo
10.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38781029

RESUMEN

The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Fosfatos de Fosfatidilinositol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Dev Cell ; 59(12): 1593-1608.e6, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640926

RESUMEN

Epithelial remodeling of the Drosophila retina depends on the pulsatile contraction and expansion of apical contacts between the cells that form its hexagonal lattice. Phosphoinositide PI(3,4,5)P3 (PIP3) accumulates around tricellular adherens junctions (tAJs) during contact expansion and dissipates during contraction, but with unknown function. Here, we found that manipulations of Pten or PI3-kinase (PI3K) that either decreased or increased PIP3 resulted in shortened contacts and a disordered lattice, indicating a requirement for PIP3 dynamics and turnover. These phenotypes are caused by a loss of branched actin, resulting from impaired activity of the Rac1 Rho GTPase and the WAVE regulatory complex (WRC). We additionally found that during contact expansion, PI3K moves into tAJs to promote the cyclical increase of PIP3 in a spatially and temporally precise manner. Thus, dynamic control of PIP3 by Pten and PI3K governs the protrusive phase of junctional remodeling, which is essential for planar epithelial morphogenesis.


Asunto(s)
Actinas , Uniones Adherentes , Proteínas de Drosophila , Morfogénesis , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol , Retina , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Actinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Uniones Adherentes/metabolismo , Retina/metabolismo , Retina/citología , Drosophila melanogaster/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
12.
Cell Rep ; 43(5): 114119, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38630589

RESUMEN

Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85ß, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85ß knockdown, underscoring their role in the tumor-promoting activity of p85α loss.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia , Endosomas , Proteínas Asociadas a Microtúbulos , Fosfatos de Fosfatidilinositol , Transducción de Señal , Animales , Humanos , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Endosomas/metabolismo , Activación Enzimática , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565949

RESUMEN

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Femenino , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Línea Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
14.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561547

RESUMEN

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Asunto(s)
Glucemia , Lipólisis , Fosfatos de Fosfatidilinositol , Animales , Humanos , Ratones , Ácidos Grasos/metabolismo , Glucosa , Lipasa/genética , Lipasa/metabolismo , Lipólisis/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Biochemistry ; 63(9): 1097-1106, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669178

RESUMEN

As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.


Asunto(s)
NADPH Oxidasas , Ácido Fítico , Ácido Fítico/metabolismo , Ácido Fítico/química , NADPH Oxidasas/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Humanos , Membrana Celular/metabolismo , NADPH Oxidasa 2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
16.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578646

RESUMEN

Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.


Asunto(s)
Técnicas Biosensibles , Fosfatidilinositoles , Endosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Técnicas Biosensibles/métodos
17.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38447569

RESUMEN

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagosomas/metabolismo
18.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536815

RESUMEN

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Asunto(s)
Colesterol , Retículo Endoplásmico , Secreción de Insulina , Insulina , Antígenos de Histocompatibilidad Menor , Receptores de Esteroides , Vesículas Secretoras , Retículo Endoplásmico/metabolismo , Vesículas Secretoras/metabolismo , Animales , Colesterol/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Humanos , Calcio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Glucosa/metabolismo
19.
Biochim Biophys Acta Biomembr ; 1866(4): 184308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437942

RESUMEN

Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.


Asunto(s)
Autofagia , Fosfatos de Fosfatidilinositol , Fosfatidilserinas , Saccharomyces cerevisiae , Autofagosomas , Autofagia/genética , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Esteroides , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Biophys J ; 123(9): 1058-1068, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38515298

RESUMEN

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is a signaling lipid on the plasma membrane that plays a fundamental role in cell signaling with a strong impact on cell physiology and diseases. It is responsible for the protruding edge formation, cell polarization, macropinocytosis, and other membrane remodeling dynamics in cells. It has been shown that the membrane confinement and curvature affects the wave formation of PIP3 and F-actin. But, even in the absence of F-actin, a complex self-organization of the spatiotemporal PIP3 waves is observed. In recent findings, we have shown that these waves can be guided and pinned on strongly bended Dictyostelium membranes caused by molecular crowding and curvature-limited diffusion. Based on these experimental findings, we investigate the spatiotemporal PIP3 wave dynamics on realistic three-dimensional cell-like membranes to explore the effect of curvature-limited diffusion, as observed experimentally. We use an established stochastic reaction-diffusion model with enzymatic Michaelis-Menten-type reactions that mimics the dynamics of Dictyostelium cells. As these cells mimic the three-dimensional shape and size observed experimentally, we found that the PIP3 wave directionality can be explained by a Hopf-like and a reverse periodic-doubling bifurcation for uniform diffusion and curvature-limited diffusion properties. Finally, we compare the results with recent experimental findings and discuss the discrepancy between the biological and numerical results.


Asunto(s)
Membrana Celular , Dictyostelium , Modelos Biológicos , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Difusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...