Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298508

RESUMEN

The histidine-containing phosphocarrier (HPr) is a monomeric protein conserved in Gram-positive bacteria, which may be of mesophilic or thermophilic nature. In particular, the HPr protein from the thermophilic organism B. stearothermophilus is a good model system for thermostability studies, since experimental data, such as crystal structure and thermal stability curves, are available. However, its unfolding mechanism at higher temperatures is yet unclear at a molecular level. Therefore, in this work, we researched the thermal stability of this protein using molecular dynamics simulations, subjecting it to five different temperatures during a time span of 1 µs. The analyses of the structural parameters and molecular interactions were compared with those of the mesophilic homologue HPr protein from B. subtilis. Each simulation was run in triplicate using identical conditions for both proteins. The results showed that the two proteins lose stability as the temperature increases, but the mesophilic structure is more affected. We found that the salt bridge network formed by the triad of Glu3-Lys62-Glu36 residues and the salt bridge made up of Asp79-Lys83 ion pair are key factors to keep stable the thermophilic protein, maintaining the hydrophobic core protected and the structure packed. In addition, these molecular interactions neutralize the negative surface charge, acting as "natural molecular staples".


Asunto(s)
Simulación de Dinámica Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Estabilidad de Enzimas , Proteínas Bacterianas/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química
2.
J Mol Microbiol Biotechnol ; 11(6): 302-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17114894

RESUMEN

Potential experimental approaches for developing and applying protein-engineering protocols to transmembrane transport systems are described. We specifically consider procedures designed to alter protein function. These procedures are designed for the specific purposes of (1) changing protein interaction specificities and (2) changing a protein's catalytic function. We use sugar-transporting bacterial phosphotransferase systems as model systems to illustrate the proposed approaches. These and other similar procedures are likely to prove to be of utility for biotechnological manipulation of proteins as well as for elucidating potential evolutionary pathways taken for the appearance of novel functions within a protein family.


Asunto(s)
Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Evolución Molecular Dirigida , Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo
3.
Proteins ; 23(3): 415-21, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8710834

RESUMEN

In this study we concentrate on replacing side chains as a subtask of model building by homology. Two problems arise. How to determine potential low energy rotamers? And how to avoid the combinatorial explosion that results from the combination of many residues for which multiple good rotamers are predicted? We attempt to solve these problems by choosing position-specific rather than generalized rotamers and by sorting the residues that have to be modelled as a function of their freedom in rotamer space. The practical advantages of our method are the quality of the models for cases of high backbone similarity, the small amount of human intervention needed, and the fact that the method automatically estimates the reliability with which each residue has been modeled. Other methods described in this issue are probably more suitable if large backbone rearrangements or loop insertions and deletions need to be modeled.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Conformación Proteica , Proteínas/química , Gráficos por Computador , Cristalografía por Rayos X , Enlace de Hidrógeno , Sistemas de Información , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Alineación de Secuencia , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA