Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Antimicrob Agents Chemother ; 68(3): e0075623, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38259086

Pneumocystis cyst life forms contain abundant ß-glucan carbohydrates, synthesized using ß-1,3 and ß-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for ß-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.


Pneumocystis carinii , Pneumocystis , Pneumonia, Pneumocystis , beta-Glucans , Humans , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/drug therapy , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , Phosphoglucomutase/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Lithium/metabolism , Lithium/pharmacology , Pneumocystis/genetics , beta-Glucans/metabolism , Phosphates/pharmacology , Glucose/metabolism , Uridine Diphosphate/metabolism , Uridine Diphosphate/pharmacology
2.
Plant Sci ; 324: 111428, 2022 Nov.
Article En | MEDLINE | ID: mdl-36007631

Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.


Germination , Triticum , Antioxidants/metabolism , Carbon/metabolism , Catalase/metabolism , Fructokinases/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Phosphoglucomutase/metabolism , Phosphoglucomutase/pharmacology , Proteome/metabolism , Reactive Oxygen Species/metabolism , Seeds/metabolism , Sodium Chloride/pharmacology , Stress, Physiological , Sucrose/metabolism , Superoxides/metabolism , Temperature , Triticum/metabolism
3.
Article En | MEDLINE | ID: mdl-34659

The antivibrionic activity of crystalline preparations of five enzymes of the glycolytic cycle of animals cells was investigated. Phosphorylase "a" (0.5 mg/ml), aldolase (15 mg/ml) and pyruvate kinase (0.1 mg/ml) were found to inhibit the proliferation of Vibrio cholerae cells; phosphoglucomutase and glyceraldehyde-3-phosphate dehydrogenase at a concentration of 0.25 mg/ml were found to be vibriocidal. A mixture of these enzymes containing 0.062 mg/ml of phosphorylase "a" and 0.125 mg/ml of each phosphoglucomutase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase showed vibriocidal activity.


Anti-Bacterial Agents , Fructose-Bisphosphate Aldolase/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/pharmacology , Phosphoglucomutase/pharmacology , Phosphorylase a/pharmacology , Phosphorylases/pharmacology , Pyruvate Kinase/pharmacology , Vibrio cholerae/drug effects , Hydrogen-Ion Concentration , Immune Sera/pharmacology , Vibrio cholerae/growth & development
5.
Biochem J ; 104(2): 524-33, 1967 Aug.
Article En | MEDLINE | ID: mdl-4227784

1. Intracellular concentrations of intermediates and cofactors of glycolysis were measured in guinea-pig cerebral cortex slices incubated under varying conditions. 2. Comparison of mass-action ratios with apparent equilibrium constants for the reactions of glycolysis showed that hexokinase, phosphofructokinase and pyruvate kinase catalyse reactions generally far from equilibrium, whereas phosphoglucose isomerase, aldolase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, adenlyate kinase and creatine phosphokinase are generally close to equilibrium. The possibility that glyceraldehyde 3-phosphate dehydrogenase may catalyse a ;non-equilibrium' reaction is discussed. 3. Correlation of changes in concentrations of substrates for enzymes catalysing ;non-equilibrium' reactions with changes in rates of glycolysis caused by alteration of the conditions of incubation showed that hexokinase, phosphofructokinase, pyruvate kinase and possibly glyceraldehyde 3-phosphate dehydrogenase are subject to metabolic control in cerebral cortex slices. 4. It is suggested that the glycolysis is controlled by two regulatory systems, the hexokinase-phosphofructokinase system and the glyceraldehyde 3-phosphate dehydrogenase-pyruvate kinase system. These are discussed. 5. It is concluded that the rate of glycolysis in guinea-pig cerebral cortex slices is limited either by the rate of glucose entry into the slices or by the hexokinase-phosphofructokinase system. 6. It is concluded that addition of 0.1mm-ouabain to guinea-pig cerebral cortex slices causes inhibition of either glyceraldehyde 3-phosphate dehydrogenase or phosphoglycerate kinase or both, in a manner independent of the known action of ouabain on the sodium- and potassium-activated adenosine triphosphatase.


Cerebral Cortex/metabolism , Glycolysis/drug effects , Animals , Creatine Kinase/pharmacology , Cyanides/pharmacology , Female , Fructose-Bisphosphate Aldolase/pharmacology , Glucose-6-Phosphate Isomerase/pharmacology , Glucosephosphate Dehydrogenase/pharmacology , Guinea Pigs , Hexokinase/pharmacology , Hydro-Lyases/pharmacology , Male , Ouabain/pharmacology , Phosphofructokinase-1/pharmacology , Phosphoglucomutase/pharmacology , Phosphoglycerate Kinase/pharmacology , Phosphotransferases/pharmacology , Potassium/pharmacology , Pyruvate Kinase/pharmacology
...