Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.446
Filtrar
1.
J Hazard Mater ; 479: 135702, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39217932

RESUMEN

Lipid remodeling is crucial for various cellular activities and the stress tolerance of plants; however, little is known about the lipid dynamics induced by the heavy metal cadmium (Cd). In this study, we investigated the phospholipid profiles in rice (Oryza sativa) under Cd exposure. We observed a significant decline in the total amounts of phosphatidylcholine and phosphatidylserine, contrasted with an elevation in phosphatidic acid (PA) due to Cd stress. Additionally, Cd stress prompted the activation of phospholipase D (PLD) and induced the expression of PLDα1. OsPLDα1 knockout mutants (Ospldα1) showed increased sensitivity to Cd, characterized by a heightened accumulation of hydrogen peroxide in roots and diminished PA production following Cd treatment. Conversely, PLDα1-overexpressing (OsPLDα1-OE) lines demonstrated enhanced tolerance to Cd, with suppressed transcription of the respiratory burst oxidase homolog (Rboh) genes. The transcription levels of genes associated with Cd uptake and transport were accordingly modulated in Ospldα1 and OsPLDα1-OE plants relative to the wild-type. Taken together, our findings underscore the pivotal role of OsPLDα1 in conferring tolerance to Cd by modulating reactive oxygen species homeostasis and lipid remodeling in rice.


Asunto(s)
Cadmio , Oryza , Fosfolipasa D , Proteínas de Plantas , Especies Reactivas de Oxígeno , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Cadmio/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Plantas Modificadas Genéticamente , Peróxido de Hidrógeno/metabolismo , Ácidos Fosfatidicos/metabolismo
2.
Nat Commun ; 15(1): 7020, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147733

RESUMEN

Mechanosensitive PIEZO2 ion channels play roles in touch, proprioception, and inflammatory pain. Currently, there are no small molecule inhibitors that selectively inhibit PIEZO2 over PIEZO1. The TMEM120A protein was shown to inhibit PIEZO2 while leaving PIEZO1 unaffected. Here we find that TMEM120A expression elevates cellular levels of phosphatidic acid and lysophosphatidic acid (LPA), aligning with its structural resemblance to lipid-modifying enzymes. Intracellular application of phosphatidic acid or LPA inhibits PIEZO2 but not PIEZO1 activity. Extended extracellular exposure to the non-hydrolyzable phosphatidic acid and LPA analog carbocyclic phosphatidic acid (ccPA) also inhibits PIEZO2. Optogenetic activation of phospholipase D (PLD), a signaling enzyme that generates phosphatidic acid, inhibits PIEZO2 but not PIEZO1. Conversely, inhibiting PLD leads to increased PIEZO2 activity and increased mechanical sensitivity in mice in behavioral experiments. These findings unveil lipid regulators that selectively target PIEZO2 over PIEZO1, and identify the PLD pathway as a regulator of PIEZO2 activity.


Asunto(s)
Canales Iónicos , Lisofosfolípidos , Ácidos Fosfatidicos , Canales Iónicos/metabolismo , Canales Iónicos/genética , Animales , Ácidos Fosfatidicos/metabolismo , Humanos , Ratones , Lisofosfolípidos/metabolismo , Células HEK293 , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Mecanotransducción Celular , Ratones Endogámicos C57BL , Masculino , Optogenética
3.
Acta Trop ; 258: 107354, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106916

RESUMEN

Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.


Asunto(s)
Fosfolipasa D , Proteínas Recombinantes , Venenos de Araña , Animales , Fosfolipasa D/inmunología , Fosfolipasa D/genética , Venenos de Araña/inmunología , Ratones , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Picaduras de Arañas/inmunología , Araña Reclusa Parda/inmunología , Femenino , Antígenos/inmunología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/inmunología , Anticuerpos Neutralizantes , Antivenenos/inmunología , Antivenenos/administración & dosificación , Modelos Animales de Enfermedad , Inmunización , Hidrolasas Diéster Fosfóricas
4.
ACS Chem Biol ; 19(8): 1683-1694, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39023576

RESUMEN

The proper distribution of lipids within organelle membranes requires rapid interorganelle lipid transport, much of which occurs at membrane contact sites and is mediated by lipid transfer proteins (LTPs). Our current understanding of LTP mechanism and function is based largely on structural studies and in vitro reconstitution. Existing cellular assays for LTP function use indirect readouts, and it remains an open question as to whether substrate specificity and transport kinetics established in vitro are similar in cellular settings. Here, we harness bioorthogonal chemistry to develop tools for direct visualization of interorganelle transport of phospholipids between the plasma membrane (PM) and the endoplasmic reticulum (ER). Unnatural fluorescent phospholipid analogs generated by the transphosphatidylation activity of phospholipase D (PLD) at the PM are rapidly transported to the ER dependent in part upon extended synaptotagmins (E-Syts), a family of LTPs at ER-PM contact sites. Ectopic expression of an artificial E-Syt-based tether at ER-mitochondria contact sites results in fluorescent phospholipid accumulation in mitochondria. Finally, in vitro reconstitution assays demonstrate that the fluorescent lipids are bona fide E-Syt substrates. Thus, fluorescent lipids generated in situ via PLD activity and bioorthogonal chemical tagging can enable direct visualization of the activity of LTPs that mediate bulk phospholipid transport at ER-PM contact sites.


Asunto(s)
Retículo Endoplásmico , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/química , Retículo Endoplásmico/metabolismo , Humanos , Transporte Biológico , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Fosfolipasa D/metabolismo , Mitocondrias/metabolismo , Animales
5.
Genome Biol ; 25(1): 199, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075580

RESUMEN

BACKGROUND: Phosphorus is a macronutrient necessary for plant growth and development and its availability and efficient use affect crop yields. Leaves are the largest tissue that uses phosphorus in plants, and membrane phospholipids are the main source of cellular phosphorus usage. RESULTS: Here we identify a key process for plant cellular phosphorus recycling mediated by membrane phospholipid hydrolysis during leaf senescence. Our results indicate that over 90% of lipid phosphorus, accounting for more than one-third of total cellular phosphorus, is recycled from senescent leaves before falling off the plants. Nonspecific phospholipase C4 (NPC4) and phospholipase Dζ2 (PLDζ2) are highly induced during leaf senescence, and knockouts of PLDζ2 and NPC4 decrease the loss of membrane phospholipids and delay leaf senescence. Conversely, overexpression of PLDζ2 and NPC4 accelerates the loss of phospholipids and leaf senescence, promoting phosphorus remobilization from senescent leaves to young tissues and plant growth. We also show that this phosphorus recycling process in senescent leaves mediated by membrane phospholipid hydrolysis is conserved in plants. CONCLUSIONS: These results indicate that PLDζ2- and NPC4-mediated membrane phospholipid hydrolysis promotes phosphorus remobilization from senescent leaves to growing tissues and that the phospholipid hydrolysis-mediated phosphorus recycling improves phosphorus use efficiency in plants.


Asunto(s)
Fosfatos , Fosfolipasa D , Hojas de la Planta , Hojas de la Planta/metabolismo , Fosfatos/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Senescencia de la Planta , Arabidopsis/metabolismo , Arabidopsis/genética , Fósforo/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfolípidos/metabolismo , Fosfolipasas/metabolismo , Hidrólisis , Regulación de la Expresión Génica de las Plantas
6.
Methods Mol Biol ; 2816: 129-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977594

RESUMEN

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Asunto(s)
Alcoholes , Química Clic , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Química Clic/métodos , Alcoholes/química , Alcoholes/metabolismo , Reacción de Cicloadición , Humanos , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/química , Azidas/química , Imagen Molecular/métodos , Alquinos/química
7.
Exp Mol Med ; 56(7): 1479-1487, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38945955

RESUMEN

The development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance. Among the aberrantly activated pathways, the PI3K-Akt/Wnt/ß-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance. Crosstalk involving the PLD and Wnt/ß-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers. Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/ß-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance.


Asunto(s)
Resistencia a Antineoplásicos , Células Madre Neoplásicas , Fosfatidilinositol 3-Quinasas , Fosfolipasa D , Proteínas Proto-Oncogénicas c-akt , Vía de Señalización Wnt , Humanos , Fosfolipasa D/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Terapia Molecular Dirigida
8.
Int J Biol Macromol ; 273(Pt 2): 133112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880454

RESUMEN

Tumor metastasis is the leading cause of cancer-related death in patients with colorectal cancer (CRC). Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins, involved in the tumorigenesis and metastasis of various cancers. However, the molecular mechanisms of hnRNPs in CRC metastasis remain unclear. This study aims to uncover the pivotal roles and molecular mechanisms of hnRNPs in CRC metastasis. Clinical database analysis suggested that the expression of hnRNP-Associated with Lethal Yellow (RALY, an important member of hnRNPs) was strongly correlated with the aggressiveness and survival of CRC patients. Gain- and loss-of-function studies demonstrated that RALY promotes the production of exosomes by increasing the formation of multivesicular bodies (MVBs) and enhancing the fusion of MVBs with the plasma membrane. Notably, RALY directly interacts with phospholipase D2 (PLD2) to enable exosome biogenesis, and cooperates with RBM15b to control PLD2 mRNA stability in an m6A-dependent manner. RALY-mediated exosome secretion activates pro-tumor macrophages and further facilitates CRC metastasis, while rescue experiments in vivo further confirmed that RALY-mediated exosome biogenesis facilitates CRC metastasis. Collectively, our findings demonstrate that RALY promotes exosome biogenesis and facilitates colorectal cancer metastasis by upregulating PLD2 and enhancing exosome production in an m6A-dependent manner, suggesting potential therapeutic strategies for combating CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Metástasis de la Neoplasia , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Cuerpos Multivesiculares/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
9.
Structure ; 32(6): 645-647, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848679

RESUMEN

Phospholipase D (PLD) family proteins degrade phospholipids and nucleic acids. In the current issue of Structure, Yuan et al.1 report crystal structures of lysosomal PLD3 and PLD4 with and without a single-stranded DNA substrate. Their manuscript reveals a catalytic ping-pong mechanism and explains how disease-associated mutations compromise PLD3/4 function.


Asunto(s)
Lisosomas , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Lisosomas/metabolismo , Humanos
10.
Planta ; 259(6): 142, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702456

RESUMEN

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfolipasa D , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Peroxidación de Lípido
11.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697119

RESUMEN

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Asunto(s)
Endorribonucleasas , Receptor Toll-Like 7 , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Humanos , Endorribonucleasas/metabolismo , Ligandos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , ARN/metabolismo , Células HEK293 , Lisosomas/metabolismo , Animales , Exonucleasas/metabolismo , Ratones , Sitios de Unión
12.
mBio ; 15(6): e0012424, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38722159

RESUMEN

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Asunto(s)
Biopelículas , Fosfolipasa D , Siphonaptera , Yersinia pestis , Yersinia pestis/enzimología , Fosfolipasa D/metabolismo , Siphonaptera/microbiología , Biopelículas/crecimiento & desarrollo , Peste/microbiología , Peste/transmisión , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/microbiología , Matriz Extracelular de Sustancias Poliméricas/ultraestructura , Polisacáridos/metabolismo , Microscopía Electrónica de Transmisión , Proteoma/metabolismo , Animales , Ratones , Lípidos/análisis
13.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703555

RESUMEN

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Células Endoteliales , Glicocálix , Lipopolisacáridos , Fosfolipasa D , Síndrome de Dificultad Respiratoria , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Línea Celular , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glicocálix/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Sindecano-1/metabolismo , Sindecano-1/genética
14.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606629

RESUMEN

The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.


Asunto(s)
Factores de Ribosilacion-ADP , Fosfolipasa D , Transducción de Señal , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Humanos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Células HEK293 , Animales , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética , Mapeo de Interacción de Proteínas
15.
Food Funct ; 15(8): 4389-4398, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38563085

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.


Asunto(s)
Ritmo Circadiano , Fibras Musculares Esqueléticas , Fosfolipasa D , Valeratos , Valeratos/farmacología , Animales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ratones , Fosfolipasa D/metabolismo , Ritmo Circadiano/efectos de los fármacos , Línea Celular , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Desarrollo de Músculos/efectos de los fármacos
16.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630134

RESUMEN

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Asunto(s)
Cardiomiopatías , Caspasa 1 , Ratones Noqueados , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Fosfolipasa D , Piroptosis , Sepsis , Animales , Masculino , Ratones , Ratas , Cardiomiopatías/etiología , Cardiomiopatías/genética , Caspasa 1/metabolismo , Caspasa 1/genética , Línea Celular , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Sepsis/complicaciones , Sepsis/genética , Transducción de Señal
17.
Biomolecules ; 14(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38672447

RESUMEN

Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.


Asunto(s)
Escherichia coli , Fosfatidilserinas , Fosfolipasa D , Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biosíntesis , Fosfatidilserinas/biosíntesis , Fosfatidilserinas/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
18.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593488

RESUMEN

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Asunto(s)
Homeostasis , Fosfolipasa D , Proteínas de Plantas , Populus , Estrés Salino , Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Populus/metabolismo , Populus/genética , Populus/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Técnicas del Sistema de Dos Híbridos
19.
Autophagy ; 20(7): 1616-1638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513669

RESUMEN

PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.


Asunto(s)
Autofagia , Meiosis , Oocitos , Fosfolipasa D , Huso Acromático , Animales , Autofagia/fisiología , Autofagia/genética , Oocitos/metabolismo , Meiosis/fisiología , Huso Acromático/metabolismo , Ratones , Femenino , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Movimiento Celular/fisiología , Fosforilación
20.
Braz J Med Biol Res ; 57: e13218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451609

RESUMEN

High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.


Asunto(s)
Mal de Altura , Ferroptosis , Fosfolipasa D , Animales , Ratones , Mal de Altura/genética , Mal de Altura/metabolismo , Hipoxia , Fosfolipasa D/metabolismo , Proteómica , Transducción de Señal , Bazo/metabolismo , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA