Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.150
1.
Environ Monit Assess ; 196(6): 567, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775991

The study attempted to evaluate the agricultural soil quality using the Soil Quality Index (SQI) model in two Community Development Blocks, Ausgram-II and Memari-II of Purba Bardhaman District. Total 104 soil samples were collected (0-20 cm depth) from each Block to analyse 13 parameters (bulk density, soil porosity, soil aggregate stability, water holding capacity, infiltration rate, available nitrogen, available phosphorous, available potassium, soil pH, soil organic carbon, electrical conductivity, soil respiration and microbial biomass carbon) in this study. The Integrated Quality Index (IQI) was applied using the weighted additive approach and non-linear scoring technique to retain the Minimum Data Set (MDS). Principal Component Analysis (PCA) identified that SAS, BD, available K, pH, available N, and available P were the key contributing parameters to SQI in Ausgram-II. In contrast, WHC, SR, available N, pH, and SAS contributed the most to SQI in Memari-II. Results revealed that Ausgram-II (0.97) is notably higher SQI than Memari-II (0.69). In Ausgram-II, 99.72% of agricultural lands showed very high SQI (Grade I), whereas, in Memari-II, 49.95% of lands exhibited a moderate SQI (Grade III) and 49.90% showed a high SQI (Grade II). Sustainable Yield Index (SYI), Sensitivity Index (SI) and Efficiency Ratio (ER) were used to validate the SQIs. A positive correlation was observed between SQI and paddy ( R2 = 0.82 & 0.72) and potato yield (R2 = 0.71 & 0.78) in Ausgram-II and Memari-II Block, respectively. This study could evaluate the agricultural soil quality and provide insights for decision-making in fertiliser management practices to promote agricultural sustainability.


Agriculture , Environmental Monitoring , Oryza , Soil , India , Soil/chemistry , Environmental Monitoring/methods , Oryza/growth & development , Nitrogen/analysis , Soil Pollutants/analysis , Phosphorus/analysis
2.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733446

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Environmental Monitoring , Phosphorus , Seawater , Trace Elements , Water Pollutants, Chemical , North Sea , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Phosphorus/analysis , Nutrients/analysis , Nitrogen/analysis , Metals/analysis , Eutrophication
3.
Environ Geochem Health ; 46(6): 179, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695935

The uncertainty in the generation and formation of non-point source pollution makes it challenging to monitor and control this type of pollution. The SWAT model is frequently used to simulate non-point source pollution in watersheds and is mainly applied to natural watersheds that are less affected by human activities. This study focuses on the Duliujian River Basin (Xiqing section), which is characterized by a dense population and rapid urbanization. Based on the calibrated SWAT model, this study analyzed the effects of land use change on non-point source pollution both temporally and spatially. It was found that nitrogen and phosphorus non-point source pollution load losses were closely related to land use type, with agricultural land and high-density urban land (including rural settlements) being the main contributors to riverine nitrogen and phosphorus pollution. This indicates the necessity of analyzing the impact of land use changes on non-point source pollution loads by identifying critical source areas and altering the land use types that contribute heavily to pollution in these areas. The simulation results of land use type changes in these critical source areas showed that the reduction effect on non-point source pollution load is in the order of forest land > grassland > low-density residential area. To effectively curb surface source pollution in the study area, strategies such as modifying urban land use types, increasing vegetation cover and ground infiltration rate, and strictly controlling the discharge of domestic waste and sewage from urban areas can be implemented.


Environmental Monitoring , Nitrogen , Phosphorus , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Phosphorus/analysis , Nitrogen/analysis , China , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Urbanization , Non-Point Source Pollution/analysis , Non-Point Source Pollution/prevention & control , Models, Theoretical , Agriculture , Computer Simulation
4.
Sci Rep ; 14(1): 10097, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698154

To explore the impacts of continuous Ganoderma lucidum cultivation on soil physicochemical factors, soil enzyme activity, and the metabolome of Ganoderma lucidum fruiting bodies, this study conducted two consecutive years of cultivation on the same plot of land. Soil physicochemical factors and enzyme activity were assessed, alongside non-targeted metabolomic analysis of the Ganoderma lucidum fruiting bodies under continuous cultivation. The findings unveiled that in the surface soil layer (0-15 cm), there was a declining trend in organic matter, ammonium nitrogen, available phosphorus, available potassium, pH, polyphenol oxidase, peroxidase, alkaline phosphatase, and sucrase, whereas nitrate nitrogen, electrical conductivity (EC), and salt content exhibited an upward trend. Conversely, in the deeper soil layer (15-30 cm), organic matter, ammonium nitrogen, available potassium, alkaline phosphatase, and sucrase demonstrated a decreasing trend, while nitrate nitrogen, available phosphorus, pH, EC, salt content, polyphenol oxidase, and soil peroxidase showed an increasing trend. Metabolomic analysis of Ganoderma lucidum fruiting bodies distinguished 64 significantly different metabolites between the GCK and GT groups, with 39 components having markedly higher relative contents in GCK and 25 components having significantly lower relative contents in GCK compared to GT. Moreover, among these metabolites, there were more types with higher contents in the fruiting bodies harvested in the first year (GCK) compared to those harvested in the second year (GT), with pronounced differences. KEGG pathway analysis revealed that GCK exhibited more complex metabolic pathways compared to GT. The metabolites of Ganoderma lucidum fruiting bodies were predominantly influenced by soil physicochemical factors and soil enzyme activity. In the surface soil layer (0-15 cm), the metabolome was significantly affected by soil pH, soil organic matter, available phosphorus, and soil alkaline phosphatase, while in the deeper soil layer (15-30 cm), differences in the Ganoderma lucidum metabolome were more influenced by soil alkaline phosphatase, soil catalase, pH, nitrate nitrogen, and soil sucrase.


Fruiting Bodies, Fungal , Reishi , Soil , Reishi/metabolism , Reishi/growth & development , Soil/chemistry , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/growth & development , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Nutrients/metabolism , Nutrients/analysis , Metabolome , Metabolomics/methods , Hydrogen-Ion Concentration
5.
PLoS One ; 19(5): e0300573, 2024.
Article En | MEDLINE | ID: mdl-38739594

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Biomass , Cicer , Phosphorus , Soil , Triticum , Phosphorus/analysis , Phosphorus/metabolism , Triticum/growth & development , Triticum/metabolism , Soil/chemistry , Cicer/growth & development , Cicer/metabolism , Agriculture/methods , Rhizosphere , Tropical Climate , Crops, Agricultural/growth & development , Crop Production/methods , Hydrogen-Ion Concentration , Climate
6.
Sci Rep ; 14(1): 11469, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769392

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Biomass , Charcoal , Pyrolysis , Charcoal/chemistry , Phosphorus/chemistry , Phosphorus/analysis , Wood/chemistry , Hydrogen-Ion Concentration , Soil/chemistry , Temperature , Acacia/chemistry , Carbon/chemistry , Carbon/analysis
7.
BMC Oral Health ; 24(1): 581, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764034

BACKGROUND: This study was conducted to compare chemical, elemental and surface properties of sound and carious dentin after application of two restorative materials resin-modified glassionomer claimed to be bioactive and glass hybrid restorative material after enzymatic chemomechanical caries removal (CMCR) agent. METHODS: Forty carious and twenty non-carious human permanent molars were used. Molars were randomly distributed into three main groups: Group 1 (negative control) - sound molars, Group 2 (positive control) - molars were left without caries removal and Group 3 (Test Group) caries excavated with enzymatic based CMCR agent. After caries excavation and restoration application, all specimens were prepared Vickers microhardness test (VHN), for elemental analysis using Energy Dispersive Xray (EDX) mapping and finally chemical analysis using Micro-Raman microscopy. RESULTS: Vickers microhardness values of dentin with the claimed bioactive GIC specimens was statistically higher than with glass hybrid GIC specimens. EDX analysis at the junction estimated: Calcium and Phosphorus of the glass hybrid GIC showed insignificantly higher mean valued than that of the bioactive GIC. Silica and Aluminum mean values at the junction were significantly higher with bioactive GIC specimens than glass hybrid GIC specimen. Micro-raman spectroscopy revealed that bioactive GIC specimens showed higher frequencies of v 1 PO 4, which indicated high level of remineralization. CONCLUSIONS: It was concluded that ion-releasing bioactive resin-based restorative material had increased the microhardness and remineralization rate of carries affected and sound dentin. In addition, enzymatic caries excavation with papain-based CMCR agent has no adverse effect on dentin substrate.


Dental Caries , Dental Cavity Preparation , Dentin , Glass Ionomer Cements , Hardness , Humans , Dental Caries/therapy , Glass Ionomer Cements/chemistry , Dental Cavity Preparation/methods , Phosphorus/analysis , Papain/therapeutic use , Surface Properties , Dental Restoration, Permanent/methods , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , Calcium/analysis , Molar , Tooth Remineralization/methods , Aluminum , Silicon Dioxide , Materials Testing
8.
Sci Rep ; 14(1): 11295, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760401

Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.


Microbiota , Plant Roots , Pleurotus , Rhizosphere , Soil Microbiology , Soil , Tea , Pleurotus/growth & development , Pleurotus/metabolism , Plant Roots/microbiology , Tea/microbiology , Soil/chemistry , Camellia sinensis/microbiology , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Fungi/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Hydrogen-Ion Concentration
9.
Sci Total Environ ; 931: 172897, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38697527

Microorganisms play pivotal roles in different biogeochemical cycles within coral reef waters. Nevertheless, our comprehension of the microbially mediated processes following environmental perturbation is still limited. To gain a deeper insight into the environmental adaptation and nutrient cycling, particularly within core and noncore bacterial communities, it is crucial to understand reef ecosystem functioning. In this study, we delved into the microbial community structure and function of seawater in a coral reef under different degrees of anthropogenic disturbance. To achieve this, we harnessed the power of 16S rRNA gene high-throughput sequencing and metagenomics techniques. The results showed that a continuous temporal succession but little spatial heterogeneity in the bacterial communities of core and noncore taxa and functional profiles involved in nitrogen (N) and phosphorus (P) cycling. Eutrophication state (i.e., nutrient concentration and turbidity) and temperature played pivotal roles in shaping both the microbial community composition and functional traits of coral reef seawater. Within this context, the core subcommunity exhibited a remarkably broader habitat niche breadth, stronger phylogenetic signal and lower environmental sensitivity when compared to the noncore taxa. Null model analysis further revealed that the core subcommunity was governed primarily by stochastic processes, while deterministic processes played a more significant role in shaping the noncore subcommunity. Furthermore, our observations indicated that changes in function related to N cycling were correlated to the variations in noncore taxa, while core taxa played a more substantial role in critical processes such as P cycling. Collectively, these findings facilitated our knowledge about environmental adaptability of core and noncore bacterial taxa and shed light on their respective roles in maintaining diverse nutrient cycling within coral reef ecosystems.


Bacteria , Coral Reefs , Microbiota , Seawater , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Phosphorus/analysis , RNA, Ribosomal, 16S , Nitrogen/analysis , Environmental Monitoring , Eutrophication
10.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703845

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Grassland , Nitrogen , Phosphorus , Rhizosphere , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , Soil/chemistry , Microbiota
11.
J Clin Pediatr Dent ; 48(3): 86-93, 2024 May.
Article En | MEDLINE | ID: mdl-38755986

The aim of the study was to evaluate the severity of molar incisor hypomineralisation (MIH), related oral health and investigate salivary mineral composition. The study was conducted with 50 participants aged between 6-15 years who were effected with MIH and 50 without MIH. The International Caries Detection and Assessment System (ICDAS) scores, Decayed, Missing, Filled Teeth/Surface (DMFT/S), dft/s and gingival/plaque indices were evaluated. The pH, flow rate, buffering capacity and mineral composition of saliva was measured. "Student t" test, one-way analysis of variance in repeated measurements of groups, and Tukey multiplex in subgroup comparisons was used. Kruskal-Wallis, Mann-Whitney U, Wilcoxon and chi-square tests were used to analyze qualitative data and compare groups. A total of 100 children (57 females 43 males, mean age 10.12 ± 1.85) participated in the study. There was no difference between ICDAS, DMFT/S scores, but dft/s index values were statistically significant (p = 0.001). The simplified oral hygiene index of MIH patients were statistically higher, but no significant differences were found in modified gingival indices (p = 0.52). Although the salivary pH and flow rate of the patients in the study group were lower, the buffering capacity was higher than those in the control group, but no significant difference was observed (p = 0.64). The mean values of phosphorus, carbon and calcium content in the saliva samples of MIH patients were higher than those of patients without MIH, and this difference was low for phosphorus (p = 0.76) and carbon (p = 0.74), but significantly higher for calcium. To the best of our knowledge, this is the first study to evaluate the association between calcium, phosphate and carbon levels in saliva of children with MIH. The significantly high amount of calcium in the saliva of patients with MIH suggests that further investigations are needed.


Dental Enamel Hypoplasia , Saliva , Humans , Saliva/chemistry , Child , Female , Male , Adolescent , Hydrogen-Ion Concentration , Minerals/analysis , Calcium/analysis , DMF Index , Severity of Illness Index , Phosphorus/analysis , Molar Hypomineralization
12.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Article En | MEDLINE | ID: mdl-38755583

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Grassland , Herbivory , China , Desert Climate , Soil/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Conservation of Natural Resources , Nitrogen/metabolism , Poaceae , Carbon/metabolism , Ecosystem , Nutrients/metabolism , Environmental Restoration and Remediation/methods , Animals
13.
Sci Total Environ ; 932: 173047, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38723957

This research was designed to estimate the contributions of phosphorus (P) in different factions from an upstream plain river network to algal growth in a downstream shallow eutrophic lake, Taihu Lake, in China. During three flow regimes, the P fractions in multiple phases (particulate, colloidal and dissolved phases) and their algal availabilities were assessed via bioassays with Dolichospermum flos-aquae as the test organism. The P partitioning patterns among multiple phases were strongly affected by the concentration of total suspended solids (TSS) that changed with the river flow regime, with stronger disturbance of sediments at lower water levels (low flow) and weaker disturbance of sediments at higher water levels (high flow) in the plain river network. The median TSS concentration across the river network decreased from 157.4 mg/L during low flow to 31.8 mg/L during high flow, and the median particulate P concentration decreased from 0.132 mg/L to 0.093 mg/L. The particulate P contributed equally to the amount of algal available P (AAP) as did the water-mobilizable P (colloidal plus dissolved phase) in the rivers flowing into Taihu Lake. The annual average concentrations of particulate algal available P (P-AAP), colloidal algal available P (C-AAP) and dissolved algal available P (D-AAP) were estimated to be 0.032 mg/L, 0.012 mg/L and 0.019 mg/L, respectively, during 2012-2018, accounting for 50.8 %, 19.0 % and 30.2 %, respectively, of the total AAP. At the watershed scale, controlling P drainage from downstream urbanized areas should be emphasized. Additionally, controlling sediment resuspension or reducing the TSS concentration in the inflowing rivers is important for decreasing the particulate P flux to downstream lakes.


Environmental Monitoring , Eutrophication , Lakes , Phosphorus , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Lakes/chemistry , Rivers/chemistry , China , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry
14.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700640

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Environmental Monitoring , Nitrogen , Phosphorus , Soil , Triticum , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Fertilizers/analysis , Agriculture/methods , Nutrients/analysis , Carbon/analysis
15.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Article En | MEDLINE | ID: mdl-38644013

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Climate Change , Environmental Monitoring , Eutrophication , Nitrogen , Phosphorus , Rivers , Temperature , Water Pollutants, Chemical , Phosphorus/analysis , Nitrogen/analysis , Rivers/chemistry , Italy , Water Pollutants, Chemical/analysis , Seasons
16.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646750

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Carbon , Cunninghamia , Fagaceae , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Cunninghamia/growth & development , Cunninghamia/metabolism , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Fagaceae/growth & development , Fagaceae/metabolism , Leucyl Aminopeptidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , beta-Glucosidase/metabolism , China
17.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646751

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Caragana , Carbon , Forests , Nitrogen , Organic Chemicals , Phosphorus , Soil , China , Soil/chemistry , Carbon/analysis , Caragana/growth & development , Nitrogen/analysis , Phosphorus/analysis , Organic Chemicals/analysis , Nutrients/analysis , Environmental Restoration and Remediation/methods , Carbon Sequestration , Ecosystem
18.
Ying Yong Sheng Tai Xue Bao ; 35(3): 615-621, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646748

The aim of this study was to reveal the stoichiometric characteristics of carbon, nitrogen and phosphorus in rhizosphere and non-rhizosphere soils of Pinus sylvestris var. mongolica in the Hulunbuir desert. We investigated the contents and stoichiometry of organic carbon, total nitrogen, and total phosphorus contents of rhizosphere and non-rhizosphere soils across different stand ages (28, 37 and 46 a) of P. sylvestris var. mongolica plantations, with P. sylvestris var. mongolica natural forest as the control. We analyzed the correlation between soils properties and soil stoichiometry. The results showed that rhizosphere effect significantly affected soil N:P, and stand age significantly affected soil organic carbon content in P. sylvestris var. mongolica plantation. Soil organic carbon content in plantation was significantly lower than that in natural forest. Soil organic carbon and total nitrogen contents of plantations in both rhizosphere and non-rhizosphere soils firstly decreased and then increased with increasing stand age, while total phosphorus firstly increased and then decreased in rhizosphere soils, and firstly decreased and then increased in non-rhizosphere soils. There was significant positive correlations between C:N and C:P in rhizosphere soils but not in non-rhizosphere soils, suggesting that higher synergistic rhizosphere soil N and P limitation. The mean N:P values of rhizosphere and non-rhizosphere soils were 4.98 and 8.40, respectively, indicating that the growth of P. sylvestris var. mongolica was restricted by soil N and the rhizosphere soils were more N-restricted. The C:N:P stoichiometry of rhizosphere and non-rhizosphere soils were significantly influenced by soil properties, with available phosphorus being the most important driver. The growth of P. sylvestris var. mongolica was limited by N in the Hulunbuir desert, and root system played an obvious role in enriching and maintaining soil nutrients. It was recommended that soil nitrogen should be supplemented appropriately during the growth stage of P. sylvestris var. mongolica plantation, and phosphorus should be supplemented appropriately according to the synergistic nature of nitrogen and phosphorus limitation.


Carbon , Nitrogen , Phosphorus , Pinus sylvestris , Rhizosphere , Soil , Phosphorus/analysis , Nitrogen/analysis , Soil/chemistry , Carbon/analysis , Pinus sylvestris/growth & development , Forests , China , Plant Roots/metabolism , Plant Roots/chemistry , Plant Roots/growth & development
19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646749

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Nitrogen , Phosphorus , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry , Cunninghamia/growth & development , China , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism
20.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646758

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Oryza , Rivers , Soil , Wetlands , Soil/chemistry , China , Rivers/chemistry , Oryza/growth & development , Oryza/chemistry , Environmental Monitoring , Agriculture/methods , Phosphorus/analysis , Phosphorus/chemistry , Carbon/analysis , Carbon/chemistry
...