Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.729
1.
Biotechnol J ; 19(5): e2400014, 2024 May.
Article En | MEDLINE | ID: mdl-38719614

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Aspergillus niger , Fermentation , Malates , Metabolic Engineering , NADP , Aspergillus niger/metabolism , Aspergillus niger/genetics , Malates/metabolism , Metabolic Engineering/methods , NADP/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
2.
PLoS One ; 19(5): e0303296, 2024.
Article En | MEDLINE | ID: mdl-38753743

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Fatty Liver , Hepatic Stellate Cells , Liver Cirrhosis , Lysophospholipids , Phosphotransferases (Alcohol Group Acceptor) , Sphingosine-1-Phosphate Receptors , Sphingosine , Animals , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Lysophospholipids/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/etiology , Mice , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Humans , Sphingosine-1-Phosphate Receptors/metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Male , Mice, Knockout , Mice, Inbred C57BL , Liver/metabolism , Liver/pathology , Choline Deficiency/complications , Choline Deficiency/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Pyrazoles , Pyridines
3.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Article En | MEDLINE | ID: mdl-38583827

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Epithelial Cells , Goats , Lipid Metabolism , Mammary Glands, Animal , MicroRNAs , Phosphotransferases (Alcohol Group Acceptor) , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Goats/genetics , Lipid Metabolism/genetics , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/deficiency , Up-Regulation/genetics , Lipid Droplets/metabolism , Gene Expression Regulation , Triglycerides/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167177, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636615

Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.


Fibroblasts , Mevalonate Kinase Deficiency , Mevalonate Kinase Deficiency/genetics , Mevalonate Kinase Deficiency/metabolism , Mevalonate Kinase Deficiency/pathology , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Cells, Cultured , Signal Transduction
5.
Int J Biol Macromol ; 267(Pt 1): 131323, 2024 May.
Article En | MEDLINE | ID: mdl-38574912

Sphingolipids serve as essential components of biomembrane and possess significant bioactive properties. Sphingosine-1-phophate (S1P) plays a key role in plant resistance to stress, but its specific impact on plant growth and development remains to be fully elucidated. Cotton fiber cells are an ideal material for investigating the growth and maturation of plant cells. In this study, we examined the content and composition of sphingosine (Sph) and S1P throughout the progression of fiber cell development. The content of S1P elevated gradually during fiber elongation but declined during the transition stage. Exogenous application of S1P promoted fiber elongation while using of FTY720 (an antagonist of S1P), and DMS (an inhibitor of LCBK) hindered fiber elongation. Cotton Long Chain Base Kinase 1 (GhLCBK1) was notably expressed during the fiber elongation stage, containing all conserved domains of LCBK protein and localized in the endoplasmic reticulum. Overexpression GhLCBK1 increased the S1P content and promoted fiber elongation while retarded secondary cell wall (SCW) deposition. Conversely, downregulation of GhLCBK1 reduced the S1P levels, and suppressed fiber elongation, and accelerated SCW deposition. Transcriptome analysis revealed that upregulating GhLCBK1 or applying S1P induced the expression of GhEXPANSIN and auxin related genes. Furthermore, the levels of IAA were elevated and reduced in the fibers when up-regulating or down-regulating GhLCBK1, respectively. Our investigation demonstrated that GhLCBK1 and its product S1P facilitated the elongation of fiber cells by affecting auxin biosynthesis. This study contributes novel insights into the intricate regulatory pathways involved in fiber cell elongation, identifying GhLCBK1 as a potential target gene and laying the groundwork for enhancing fiber quality via genetic manipulation.


Gene Expression Regulation, Plant , Gossypium , Indoleacetic Acids , Lysophospholipids , Phosphotransferases (Alcohol Group Acceptor) , Sphingosine , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Gossypium/genetics , Gossypium/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Gene Expression Regulation, Plant/drug effects , Lysophospholipids/metabolism , Cotton Fiber , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Wall/metabolism , Cell Wall/drug effects
6.
Cells ; 13(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38607078

Insulin-producing pancreatic ß cells play a crucial role in the regulation of glucose homeostasis, and their failure is a key event for diabetes development. Prolonged exposure to palmitate in the presence of elevated glucose levels, termed gluco-lipotoxicity, is known to induce ß cell apoptosis. Autophagy has been proposed to be regulated by gluco-lipotoxicity in order to favor ß cell survival. However, the role of palmitate metabolism in gluco-lipotoxcity-induced autophagy is presently unknown. We therefore treated INS-1 cells for 6 and 24 h with palmitate in the presence of low and high glucose concentrations and then monitored autophagy. Gluco-lipotoxicity induces accumulation of LC3-II levels in INS-1 at 6 h which returns to basal levels at 24 h. Using the RFP-GFP-LC3 probe, gluco-lipotoxicity increased both autophagosomes and autolysosmes structures, reflecting early stimulation of an autophagy flux. Triacsin C, a potent inhibitor of the long fatty acid acetyl-coA synthase, completely prevents LC3-II formation and recruitment to autophagosomes, suggesting that autophagic response requires palmitate metabolism. In contrast, etomoxir and bromo-palmitate, inhibitors of fatty acid mitochondrial ß-oxidation, are unable to prevent gluco-lipotoxicity-induced LC3-II accumulation and recruitment to autophagosomes. Moreover, bromo-palmitate and etomoxir potentiate palmitate autophagic response. Even if gluco-lipotoxicity raised ceramide levels in INS-1 cells, ceramide synthase 4 overexpression does not potentiate LC3-II accumulation. Gluco-lipotoxicity also still stimulates an autophagic flux in the presence of an ER stress repressor. Finally, selective inhibition of sphingosine kinase 1 (SphK1) activity precludes gluco-lipotoxicity to induce LC3-II accumulation. Moreover, SphK1 overexpression potentiates autophagic flux induced by gluco-lipotxicity. Altogether, our results indicate that early activation of autophagy by gluco-lipotoxicity is mediated by SphK1, which plays a protective role in ß cells.


Insulin-Secreting Cells , Phosphotransferases (Alcohol Group Acceptor) , Autophagy , Epoxy Compounds , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Palmitates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Cell Line , Animals , Rats
7.
EMBO J ; 43(9): 1740-1769, 2024 May.
Article En | MEDLINE | ID: mdl-38565949

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Adaptor Proteins, Signal Transducing , Breast Neoplasms , Signal Transduction , Trans-Activators , Transcription Factors , YAP-Signaling Proteins , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Female , Trans-Activators/metabolism , Trans-Activators/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Cell Line, Tumor , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Nucleus/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
8.
Asian Pac J Cancer Prev ; 25(3): 725-733, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38546054

OBJECTIVE: Availability of multimodal treatment strategies, including targeted therapies and immunotherapies, have improved the survival of non-small cell lung carcinoma (NSCLC). However, some patients still progress or respond poorly due to inherent resistance, acquired resistance, or lack of druggable driver mutations. Sphingosine-1-phosphate (S1P) and receptor tyrosine kinase-like orphan receptor (ROR1/2) signaling pathways are activated during lung carcinogenesis. METHODS: In this study, we have evaluated the crosstalk of S1P and ROR1/2 signaling pathways in lung cancer cells. RESULTS: S1P treatment of lung cancer cells decreases ROR1 and ROR2 transcript levels. While treatment with PF-543, a pharmacological SphK1 inhibitor or genetic knockdown of SPHK1 by shRNA, raises ROR1 and ROR2. Furthermore, simultaneous inhibition of SphK1 along with ROR1 reduced the migration of lung cancer cells. CONCLUSION: These findings demonstrate the reciprocal regulation of both pathways, suggesting that both pathways have an inverse relation i.e, in the absence of one pathway, another pathway may take charge of the other pathway. Therefore, simultaneously targeting both pathways could serve as a potential therapeutic target for lung cancer treatment.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lysophospholipids , Sphingosine/analogs & derivatives , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Signal Transduction , Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
9.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38536815

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Cholesterol , Endoplasmic Reticulum , Insulin Secretion , Insulin , Minor Histocompatibility Antigens , Receptors, Steroid , Secretory Vesicles , Endoplasmic Reticulum/metabolism , Secretory Vesicles/metabolism , Animals , Cholesterol/metabolism , Insulin/metabolism , Receptors, Steroid/metabolism , Phosphatidylinositol Phosphates/metabolism , Mice , Humans , Calcium/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Glucose/metabolism
10.
Dev Cell ; 59(8): 1028-1042.e5, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38452758

The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.


Interferon-gamma , Phosphotransferases (Alcohol Group Acceptor) , Signal Transduction , Animals , Humans , Mice , HEK293 Cells , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Binding , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
11.
Exp Mol Med ; 56(4): 946-958, 2024 Apr.
Article En | MEDLINE | ID: mdl-38556546

Acute liver injury is the basis of the pathogenesis of diverse liver diseases. However, the mechanism underlying liver injury is complex and not completely understood. In our study, we revealed that CERK, which phosphorylates ceramide to produce ceramide-1-phosphate (C1P), was the sphingolipid pathway-related protein that had the most significantly upregulated expression during acute liver injury. A functional study confirmed that CERK and C1P attenuate hepatic injury both in vitro and in vivo through antioxidant effects. Mechanistic studies have shown that CERK and C1P positively regulate the protein expression of NRF2, which is a crucial protein that helps maintain redox homeostasis. Furthermore, our results indicated that C1P disrupted the interaction between NRF2 and KEAP1 by competitively binding to KEAP1, which allowed for the nuclear translocation of NRF2. In addition, pull-down assays and molecular docking analyses revealed that C1P binds to the DGR domain of KEAP1, which allows it to maintain its interaction with NRF2. Importantly, these findings were verified in human primary hepatocytes and a mouse model of hepatic ischemia‒reperfusion injury. Taken together, our findings demonstrated that CERK-mediated C1P metabolism attenuates acute liver injury via the binding of C1P to the DGR domain of KEAP1 and subsequently the release and nuclear translocation of NRF2, which activates the transcription of cytoprotective and antioxidant genes. Our study suggested that the upregulation of CERK and C1P expression may serve as a potential antioxidant strategy to alleviate acute liver injury.


Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Phosphotransferases (Alcohol Group Acceptor) , Animals , Humans , Male , Mice , Ceramides/metabolism , Disease Models, Animal , Hepatocytes/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Binding
12.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38367623

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Heart , Lysophospholipids , Sphingolipids , Sphingosine/analogs & derivatives , Animals , Sphingolipids/metabolism , Isoenzymes , Mammals/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
13.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 Apr.
Article En | MEDLINE | ID: mdl-38328936

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Receptors, Lysosphingolipid , Transendothelial and Transepithelial Migration , Mice , Animals , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Sphingosine/metabolism , Myeloid Cells/metabolism , Lysophospholipids/metabolism , Tunica Intima/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
14.
Nat Commun ; 15(1): 1502, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374076

D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.


Inositol 1,4,5-Trisphosphate , Phosphotransferases (Alcohol Group Acceptor) , Inositol 1,4,5-Trisphosphate/metabolism , Catalytic Domain , Ligands , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Inositol Phosphates/metabolism , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism
15.
Proteins ; 92(6): 768-775, 2024 Jun.
Article En | MEDLINE | ID: mdl-38235908

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Amino Acid Sequence , Archaeal Proteins , Guanosine Triphosphate , Magnesium , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor) , Thermococcus , Thermococcus/enzymology , Thermococcus/genetics , Thermococcus/chemistry , Crystallography, X-Ray , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Magnesium/metabolism , Magnesium/chemistry , Mutagenesis, Site-Directed , Catalytic Domain , Binding Sites , Substrate Specificity , Coenzyme A/metabolism , Coenzyme A/chemistry , Protein Binding
16.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38189249

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Enterovirus A, Human , Enterovirus Infections , N-Terminal Acetyltransferases , Phosphotransferases (Alcohol Group Acceptor) , Child , Child, Preschool , Humans , 1-Phosphatidylinositol 4-Kinase/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Antiviral Agents , Coenzyme A/metabolism , Coxsackievirus Infections , Enterovirus A, Human/physiology , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Membrane Proteins/metabolism , N-Terminal Acetyltransferases/metabolism , Organelle Biogenesis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Virus Replication/physiology
17.
J Anat ; 244(6): 1030-1039, 2024 Jun.
Article En | MEDLINE | ID: mdl-38275211

Considering the occurrence of serious heart failure in a gene knockout mouse of PIP5Kγ and in congenital abnormal cases in humans in which the gene was defective as reported by others, the present study attempted to localize PIP5Kγ in the heart during prenatal stages. It was done on the basis of the supposition that phenotypes caused by gene mutation of a given molecule are owed to the functional deterioration of selective cellular sites normally expressing it at significantly higher levels in wild mice. PIP5Kγ-immunoreactivity was the highest in the heart at E10 in contrast to almost non-significant levels of the immunoreactivity in surrounding organs and tissues such as liver. The immunoreactivity gradually weakened in the heart with the prenatal age, and it was at non-significant levels at newborn and postnatal stages. Six patterns in localization of distinct immunoreactivity for PIP5Kγ were recognized in cardiomyocytes: (1) its localization on the plasma membranes and subjacent cytoplasm without association with short myofibrils and (2) its localization on them as well as short myofibrils in association with them in cardiomyocytes of early differentiation at E10; (3) its spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E10; (4) rare occurrences of such spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E14; (5) its localization at Z-bands of long myofibrils; and (6) its localization at intercellular junctions including the intercalated discs in cardiomyocytes of advanced differentiation at E10 and E14, especially dominant at the latter stage. No distinct localization of PIP5Kγ-immunoreactivity of any patterns was seen in the heart at E18 and P1D. The present finding suggests that sites of PIP5Kγ-appearance and probably of its high activity in cardiomyocytes are shifted from the plasma membranes through short myofibrils subjacent to the plasma membranes and long myofibrils, to Z-bands as well as to the intercalated discs during the mid-term gestation. It is further suggested that PIP5Kγ is involved in the differentiation of myofibrils as well as intercellular junctions including the intercalated discs at later stages of the mid-term gestation. Failures in its involvement in the differentiation of these structural components are thus likely to cause the mid-term gestation lethality of the mutant mice for PIP5Kγ.


Phosphotransferases (Alcohol Group Acceptor) , Animals , Mice , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Cell Differentiation/physiology , Myofibrils/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Heart/embryology , Female , Immunohistochemistry
18.
Plant Cell ; 36(5): 1791-1805, 2024 May 01.
Article En | MEDLINE | ID: mdl-38267818

Polar auxin transport in the Arabidopsis (Arabidopsis thaliana) root tip maintains high auxin levels around the stem cell niche that gradually decrease in dividing cells but increase again once they transition toward differentiation. Protophloem differentiates earlier than other proximal tissues and employs a unique auxin "canalization" machinery that is thought to balance auxin efflux with retention. It consists of a proposed activator of PIN-FORMED (PIN) auxin efflux carriers, the cAMP-, cGMP- and Calcium-dependent (AGC) kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX); its inhibitor, BREVIS RADIX (BRX); and PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K) enzymes, which promote polar PAX and BRX localization. Because of a dynamic PAX-BRX-PIP5K interplay, the net cellular output of this machinery remains unclear. In this study, we deciphered the dosage-sensitive regulatory interactions among PAX, BRX, and PIP5K by their ectopic expression in developing xylem vessels. The data suggest that the dominant collective output of the PAX-BRX-PIP5K module is a localized reduction in PIN abundance. This requires PAX-stimulated clathrin-mediated PIN endocytosis upon site-specific phosphorylation, which distinguishes PAX from other AGC kinases. An ectopic assembly of the PAX-BRX-PIP5K module is sufficient to cause cellular auxin retention and affects root growth vigor by accelerating the trajectory of xylem vessel development. Our data thus provide direct evidence that local manipulation of auxin efflux alters the timing of cellular differentiation in the root.


Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Protein Serine-Threonine Kinases , Indoleacetic Acids/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Biological Transport , Xylem/metabolism , Xylem/growth & development , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics
19.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Article En | MEDLINE | ID: mdl-38286827

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Liver Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Signal Transduction , Insulin , Phosphotransferases (Alcohol Group Acceptor)/metabolism
20.
Acta Parasitol ; 69(1): 426-438, 2024 Mar.
Article En | MEDLINE | ID: mdl-38172465

PURPOSE: Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future. METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes. RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting. CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.


Choline Kinase , Entamoeba histolytica , Phylogeny , Entamoeba histolytica/genetics , Entamoeba histolytica/enzymology , Choline Kinase/genetics , Choline Kinase/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Cloning, Molecular , Amino Acid Sequence , Escherichia coli/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Ethanolamines/metabolism , Choline/metabolism
...