Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 12535, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131190

RESUMEN

PII proteins constitute a widespread signal transduction superfamily in the prokaryotic world. The canonical PII signal proteins sense metabolic state of the cells by binding the metabolite molecules ATP, ADP and 2-oxoglutarate. Depending on bound effector molecule, PII proteins interact with and modulate the activity of multiple target proteins. To investigate the complexity of interactions of PII with target proteins, analytical methods that do not disrupt the native cellular context are required. To this purpose, split luciferase proteins have been used to develop a novel complementation reporter called NanoLuc Binary Technology (NanoBiT). The luciferase NanoLuc is divided in two subunits: a 18 kDa polypeptide termed "Large BiT" and a 1.3 kDa peptide termed "Small BiT", which only weakly associate. When fused to proteins of interest, they reconstitute an active luciferase when the proteins of interest interact. Therefore, we set out to develop a new NanoBiT sensor based on the interaction of PII protein from Synechocystis sp. PCC6803 with PII-interacting protein X (PipX) and N-acetyl-L-glutamate kinase (NAGK). The novel NanoBiT sensor showed unprecedented sensitivity, which made it possible to detect even weak and transient interactions between PII variants and their interacting partners, thereby shedding new light in PII signalling processes.


Asunto(s)
Proteínas Bacterianas/química , Técnicas Biosensibles , Proteínas PII Reguladoras del Nitrógeno/aislamiento & purificación , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Ácidos Cetoglutáricos/química , Nanotecnología , Proteínas PII Reguladoras del Nitrógeno/química , Synechococcus/química
2.
FEBS J ; 287(3): 465-482, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31287617

RESUMEN

During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid-localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N-acetyl-l-glutamate-kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co-evolved into a stable hetero-oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine-inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII-NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine-dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.


Asunto(s)
Chlorophyceae/metabolismo , Evolución Molecular , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorophyceae/genética , Retroalimentación Fisiológica , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Multimerización de Proteína
3.
J Phys Chem B ; 123(13): 2844-2852, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30848915

RESUMEN

In microorganisms and plants, N-acetyl-l-glutamate kinase (NAGK) catalyzes the second step in l-arginine synthesis, the phosphorylation of N-Acetyl-l-glutamate (NAG) to give N-acetyl-l-glutamate-5-phosphate. NAGK is only present in microorganisms and plants but absent in mammals, which makes it an attractive target for antimicrobial or biocidal development. Understanding the substrate binding mode and reaction mechanism of NAGK is crucial for targeting the kinase to develop potential therapies. Here, the substrate binding mode was studied by comparing the conformational change of NAGK in the presence and in the absence of the NAG substrate based on molecular dynamics simulations. We revealed that with substrate binding, the catalytic site of the kinase involving three loops in NAGK exhibits a closed conformation, which is predominantly controlled by an interaction between Arg98 and the α-COO- of NAG. Lys41 is found to guide phosphate transfer through the interactions with the ß-,γ-, and γ-phosphate oxygen atoms of adenosine 5'-triphosphate surrounded by two highly conserved glycine residues (Gly44 and Gly76), while Arg98 helps to position the NAG substrate in the catalytic site, which facilitates the phosphate transfer. Furthermore, we elucidated phosphate-transfer reaction mechanism using hybrid density functional theory-based quantum mechanics/molecular mechanics calculations (B97D/AMBER99) and found that the catalysis follows a dissociative mechanism.


Asunto(s)
Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Teoría Cuántica , Modelos Moleculares , Fosforilación , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Conformación Proteica
4.
Microb Cell Fact ; 17(1): 147, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30227873

RESUMEN

BACKGROUND: Microbial biosynthesis of natural products holds promise for preclinical studies and treating diseases. For instance, pinocembrin is a natural flavonoid with important pharmacologic characteristics and is widely used in preclinical studies. However, high yield of natural products production is often limited by the intracellular cofactor level, including adenosine triphosphate (ATP). To address this challenge, tailored modification of ATP concentration in Escherichia coli was applied in efficient pinocembrin production. RESULTS: In the present study, a clustered regularly interspaced short palindromic repeats (CRISPR) interference system was performed for screening several ATP-related candidate genes, where metK and proB showed its potential to improve ATP level and increased pinocembrin production. Subsequently, the repression efficiency of metK and proB were optimized to achieve the appropriate levels of ATP and enhancing the pinocembrin production, which allowed the pinocembrin titer increased to 102.02 mg/L. Coupled with the malonyl-CoA engineering and optimization of culture and induction condition, a final pinocembrin titer of 165.31 mg/L was achieved, which is 10.2-fold higher than control strains. CONCLUSIONS: Our results introduce a strategy to approach the efficient biosynthesis of pinocembrin via ATP level strengthen using CRISPR interference. Furthermore coupled with the malonyl-CoA engineering and induction condition have been optimized for pinocembrin production. The results and engineering strategies demonstrated here would hold promise for the ATP level improvement of other flavonoids by CRISPRi system, thereby facilitating other flavonoids production.


Asunto(s)
Adenosina Trifosfato/metabolismo , Flavanonas/biosíntesis , Ingeniería Metabólica/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ingeniería Genética , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética
5.
Appl Microbiol Biotechnol ; 101(9): 3485-3492, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28341883

RESUMEN

N-acetylglutamate kinase (NAGK) catalyzes the phosphorylation of N-acetylglutamate. In many bacteria, NAGK catalysis is the rate controlling step in the L-arginine biosynthesis pathway from glutamate to L-arginine and is allosterically inhibited by L-arginine. Many data show that conformational dynamics of NAGKs are essential for their function. The demonstration of the conformational mechanism provides a potential way to improve the yield of arginine. Due to the lack of NAGK catalysis step in arginine synthesis route of mammals, the elucidation of the dynamic mechanism can also provide a way to design a new antivirus drug. This paper reviews how the dynamics affect the activity of NAGKs and are controlled by the effectors. X-ray crystallography and modeling data have shown that in NAGKs, the structural elements required for inhibitor and substrate binding, catalysis and product release, are highly mobile. It is possible to eliminate the inhibition of the arginine and/or block the synthesis of arginine by disturbing the flexibility of the NAGKs. Amino acid kinase family is thought to share some common dynamic features; the flexible structural elements of NAGKs have been identified, but the details of the dynamics and the signal transfer pathways are yet to be elucidated.


Asunto(s)
Glutamatos/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Regulación Alostérica , Bacterias/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Fosforilación , Conformación Proteica
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1640-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249345

RESUMEN

Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.8-2.0 Å resolution. Although the mode of nucleotide binding is comparable to those of other members of the ASKHA superfamily, propionate is bound at a distinct site deeper in the hydrophobic pocket defining the active site. The propionate carboxyl is at a distance of ∼ 5 Å from the γ-phosphate of the nucleotide, supporting a direct in-line transfer mechanism. The phosphoryl-transfer reaction is likely to occur via an associative SN2-like transition state that involves a pentagonal bipyramidal structure with the axial positions occupied by the nucleophile of the substrate and the O atom between the ß- and the γ-phosphates, respectively. The proximity of the strictly conserved His175 and Arg236 to the carboxyl group of the propionate and the γ-phosphate of ATP suggests their involvement in catalysis. Moreover, ligand binding does not induce global domain movement as reported in some other members of the ASKHA superfamily. Instead, residues Arg86, Asp143 and Pro116-Leu117-His118 that define the active-site pocket move towards the substrate and expel water molecules from the active site. The role of Ala88, previously proposed to be the residue determining substrate specificity, was examined by determining the crystal structures of the propionate-bound Ala88 mutants A88V and A88G. Kinetic analysis and structural data are consistent with a significant role of Ala88 in substrate-specificity determination. The active-site pocket-defining residues Arg86, Asp143 and the Pro116-Leu117-His118 segment are also likely to contribute to substrate specificity.


Asunto(s)
Nucleótidos/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Propionatos/metabolismo , Salmonella typhimurium/enzimología , Sitios de Unión , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Unión Proteica , Salmonella typhimurium/química , Salmonella typhimurium/metabolismo , Especificidad por Sustrato
7.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 86-95, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615976

RESUMEN

Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Šresolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, ß=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.


Asunto(s)
Proteínas Bacterianas/química , Glutamatos/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Xylella/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glutamato Sintasa/química , Histidina , Enlace de Hidrógeno , Modelos Moleculares , Oligopéptidos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología Estructural de Proteína
8.
Cell ; 159(5): 1188-1199, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416954

RESUMEN

Glutamine is the primary metabolite of nitrogen assimilation from inorganic nitrogen sources in microorganisms and plants. The ability to monitor cellular nitrogen status is pivotal for maintaining metabolic homeostasis and sustaining growth. The present study identifies a glutamine-sensing mechanism common in the entire plant kingdom except Brassicaceae. The plastid-localized PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine synthesis pathway, N-acetyl-l-glutamate kinase (NAGK), that leads to arginine and polyamine formation. Crystal structures reveal that the plant-specific C-terminal extension of PII, which we term the Q loop, forms a low-affinity glutamine-binding site. Glutamine binding alters PII conformation, promoting interaction and activation of NAGK. The binding motif is highly conserved in plants except Brassicaceae. A functional Q loop restores glutamine sensing in a recombinant Arabidopsis thaliana PII protein, demonstrating the modular concept of the glutamine-sensing mechanism adopted by PII proteins during the evolution of plant chloroplasts.


Asunto(s)
Glutamina/metabolismo , Plantas/metabolismo , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Plantas/clasificación , Alineación de Secuencia
9.
Proc Natl Acad Sci U S A ; 111(29): 10532-7, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002480

RESUMEN

Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Datos de Secuencia Molecular , Fosfolípidos/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Staphylococcus aureus/patogenicidad , Especificidad por Sustrato , Transcripción Genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
ACS Synth Biol ; 3(1): 21-9, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23829416

RESUMEN

Enzymes initiating the biosynthesis of cellular building blocks are frequently inhibited by the end-product of the respective pathway. Here we present an approach to rapidly generate sets of enzymes overriding this control. It is based on the in vivo detection of the desired end-product in single cells using a genetically encoded sensor. The sensor transmits intracellular product concentrations into a graded optical output, thus enabling ultrahigh-throughput screens by FACS. We randomly mutagenized plasmid-encoded ArgB of Corynebacterium glutamicum and screened the library in a strain carrying the sensor pSenLys-Spc, which detects l-lysine, l-arginine and l-histidine. Six of the resulting N-acetyl-l-glutamate kinase proteins were further developed and characterized and found to be at least 20-fold less sensitive toward l-arginine inhibition than the wild-type enzyme. Overexpression of the mutein ArgB-K47H-V65A in C. glutamicumΔargR led to the accumulation of 34 mM l-arginine in the culture medium. We also screened mutant libraries of lysC-encoded aspartate kinase and hisG-encoded ATP phosphoribosyltransferase. We isolated 11 LysC muteins, enabling up to 45 mM l-lysine accumulation, and 13 HisG muteins, enabling up to 17 mM l-histidine accumulation. These results demonstrate that in vivo screening of enzyme libraries by using metabolite sensors is extremely well suited to identify high-performance muteins required for overproduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , ATP Fosforribosil Transferasa/genética , ATP Fosforribosil Transferasa/metabolismo , Sustitución de Aminoácidos , Arginina/química , Arginina/metabolismo , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Corynebacterium glutamicum/enzimología , Citometría de Flujo , Histidina/química , Histidina/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Plásmidos/genética , Plásmidos/metabolismo
11.
PLoS One ; 8(12): e83181, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349456

RESUMEN

The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Synechococcus/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Arginina/química , Arginina/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Synechococcus/química , Synechococcus/genética
12.
J Phys Chem B ; 117(46): 14261-72, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24147751

RESUMEN

The role of motions in the catalytic cycle of an enzyme is the subject of much debate. Crystallographic results for the enzyme N-acetyl-l-glutamate kinase (NAGK), which is a suitable target for antibacterial drugs, suggest that a conformational compression of the active site favors catalysis. We have used a QM/MM scheme to compute energy profiles of the phosphoryl transfer reaction for 20 conformations of NAGK, starting from four crystal structures that represent different stages of the catalytic process. All paths show a common associative mechanism but with a wide range of barrier heights. The position of several active site residues and water molecules are found to determine the energetic barrier of each conformation, as revealed by principal component and partial least-squares chemometric analyses. In particular, conformations in which the two substrates have a shorter distance separation and a more linear mutual orientation tend to have lower energetic barriers, thus supporting the putative role of conformational compressive motions in catalysis. Interestingly, these motions are the same that lead to opening of the active site, which molecular dynamics simulations indicate is a fast process when the enzyme is free of substrates. Despite the lack of extended sampling, the energy barrier we calculate for the chemical step lies significantly below the apparent energetic barrier derived from experiment. Although not conclusive, this result supports a previous hypothesis, also derived from experiment, that conformational motions, rather than the chemical step, are rate limiting.


Asunto(s)
Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Análisis de los Mínimos Cuadrados , Simulación de Dinámica Molecular , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Análisis de Componente Principal , Teoría Cuántica , Termodinámica
13.
Protein Expr Purif ; 91(1): 61-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23867361

RESUMEN

Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07µmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10µmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively.


Asunto(s)
Hidrolasas/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/enzimología , Regulación Alostérica , Secuencia de Aminoácidos , Escherichia coli/genética , Genes Bacterianos , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/genética , Cinética , Datos de Secuencia Molecular , Operón , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Streptococcus pyogenes/genética , Temperatura
14.
Biochim Biophys Acta ; 1834(10): 2036-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23747922

RESUMEN

Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the γ-phosphate of ATP to propionate during l-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate>acetate≈butyrate), nucleotides (ATP≈GTP>CTP≈TTP; dATP>dGTP>dCTP) and metal ions (Mg(2+)≈Mn(2+)>Co(2+)). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, α-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235-290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the γ-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer.


Asunto(s)
Alanina/química , Proteínas Bacterianas/química , Nucleótidos/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Propionatos/química , Salmonella typhimurium/química , Alanina/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Pruebas de Enzimas , Glicol de Etileno/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Magnesio/química , Manganeso/química , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Multimerización de Proteína , Salmonella typhimurium/enzimología , Alineación de Secuencia , Especificidad por Sustrato
15.
PLoS One ; 8(5): e64004, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700444

RESUMEN

The parasite Giardia lamblia utilizes the L-arginine dihydrolase pathway to generate ATP from L-arginine. Carbamate kinase (CK) catalyzes the last step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate. Because the L-arginine pathway is essential for G. lamblia survival and absent in high eukaryotes including humans, the enzyme is a potential target for drug development. We have determined two crystal structures of G. lamblia CK (glCK) with bound ligands. One structure, in complex with a nonhydrolyzable ATP analog, adenosine 5'-adenylyl-ß,γ-imidodiphosphate (AMP-PNP), was determined at 2.6 Å resolution. The second structure, in complex with citric acid bound in the postulated carbamoyl phosphate binding site, was determined in two slightly different states at 2.1 and 2.4 Å resolution. These structures reveal conformational flexibility of an auxiliary domain (amino acid residues 123-170), which exhibits open or closed conformations or structural disorder, depending on the bound ligand. The structures also reveal a smaller conformational change in a region associated the AMP-PNP adenine binding site. The protein residues involved in binding, together with a model of the transition state, suggest that catalysis follows an in-line, predominantly dissociative, phosphotransfer reaction mechanism, and that closure of the flexible auxiliary domain is required to protect the transition state from bulk solvent.


Asunto(s)
Adenilil Imidodifosfato/química , Ácido Cítrico/química , Giardia lamblia/enzimología , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Químicos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína
16.
PLoS One ; 7(10): e47886, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23082227

RESUMEN

The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an "open" conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the ß-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.


Asunto(s)
Hidrolasas/química , Redes y Vías Metabólicas , Mycoplasma penetrans/enzimología , Ornitina Carbamoiltransferasa/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Multimerización de Proteína , Especificidad por Sustrato
17.
Eukaryot Cell ; 11(10): 1249-56, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903977

RESUMEN

Acetate kinase (ACK) catalyzes the reversible synthesis of acetyl phosphate by transfer of the γ-phosphate of ATP to acetate. Here we report the first biochemical and kinetic characterization of a eukaryotic ACK, that from the protist Entamoeba histolytica. Our characterization revealed that this protist ACK is the only known member of the ASKHA structural superfamily, which includes acetate kinase, hexokinase, and other sugar kinases, to utilize inorganic pyrophosphate (PP(i))/inorganic phosphate (P(i)) as the sole phosphoryl donor/acceptor. Detection of ACK activity in E. histolytica cell extracts in the direction of acetate/PP(i) formation but not in the direction of acetyl phosphate/P(i) formation suggests that the physiological direction of the reaction is toward acetate/PP(i) production. Kinetic parameters determined for each direction of the reaction are consistent with this observation. The E. histolytica PP(i)-forming ACK follows a sequential mechanism, supporting a direct in-line phosphoryl transfer mechanism as previously reported for the well-characterized Methanosarcina thermophila ATP-dependent ACK. Characterizations of enzyme variants altered in the putative acetate/acetyl phosphate binding pocket suggested that acetyl phosphate binding is not mediated solely through a hydrophobic interaction but also through the phosphoryl group, as for the M. thermophila ACK. However, there are key differences in the roles of certain active site residues between the two enzymes. The absence of known ACK partner enzymes raises the possibility that ACK is part of a novel pathway in Entamoeba.


Asunto(s)
Difosfatos/metabolismo , Entamoeba histolytica/enzimología , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Entamoeba histolytica/genética , Datos de Secuencia Molecular , Organofosfatos/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
18.
PLoS One ; 7(4): e34734, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529931

RESUMEN

N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.


Asunto(s)
Arginina/biosíntesis , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Saccharomyces cerevisiae/metabolismo , N-Acetiltransferasa de Aminoácidos/química , N-Acetiltransferasa de Aminoácidos/metabolismo , Arginina/química , Sitios de Unión , Activación Enzimática , Histona Acetiltransferasas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
19.
J Bacteriol ; 194(11): 2791-801, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22447897

RESUMEN

In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. The arginine inhibition of Pseudomonas aeruginosa NAGS was strongly hampered, abolished, or even reverted to modest activation by changes in the length/sequence of the short linker connecting both domains, supporting a crucial role of this linker in arginine regulation. Linker cleavage or recombinant domain production allowed the isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the GNAT domain was monomeric/dimeric and catalytically active although with ∼50-fold-increased and ∼3-fold-decreased K(m)(glutamate) and k(cat) values, respectively, with arginine not influencing its activity. The deletion of N-terminal residues 1 to 12 dissociated NAGS into active dimers, catalyzing the reaction with substrate kinetics and arginine insensitivity identical to those for the GNAT domain. Therefore, the interaction between the AAK and GNAT domains from different dimers modulates GNAT domain activity, whereas the hexameric architecture appears to be essential for arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, shedding light on the origin of classical NAGS, by showing that a double mutation (M26K L240K) in the isolated NAGS AAK domain elicited NAGK activity.


Asunto(s)
N-Acetiltransferasa de Aminoácidos/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Pseudomonas aeruginosa/enzimología , N-Acetiltransferasa de Aminoácidos/química , N-Acetiltransferasa de Aminoácidos/genética , Arginina/metabolismo , Catálisis , Dimerización , Cinética , Datos de Secuencia Molecular , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
20.
Biosci Biotechnol Biochem ; 76(3): 454-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22451384

RESUMEN

γ-Glutamyl kinase (GK) is the rate-limiting enzyme in proline synthesis in microorganisms. Most microbial GKs contain an N-terminal kinase domain and a C-terminal pseudouridine synthase and archaeosine transglycosylase (PUA) domain. In contrast, higher eukaryotes possess a bifunctional Δ(1)-pyrroline-5-carboxylate synthetase, which consists of a PUA-free GK domain and a γ-glutamyl phosphate reductase (GPR) domain. Here, to examine the role of the C-terminal region, including the PUA domain of Saccharomyces cerevisiae GK, we constructed a variety of truncated yeast GK and GK/GPR fusion proteins from which the C-terminal region was deleted. A complementation test in Escherichia coli and S. cerevisiae and enzymatic analysis of recombinant proteins revealed that a 67-residue linker sequence between a 255-residue kinase domain and a 106-residue PUA domain is essential for GK activity. It also appeared that 67 or more residues of the C-terminal region, not the PUA domain itself, are required for the full display of GK activity. Further, the GK/GPR fusion protein was functional in E. coli, but decreased stability and Mg-binding ability as compared to wild-type GK. These results suggest that the C-terminal region of S. cerevisiae GK is involved in the folding and/or the stability of the kinase domain.


Asunto(s)
Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Escherichia coli/genética , Datos de Secuencia Molecular , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...