Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5387, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508071

RESUMEN

Photosynthesis and respiration rely upon a proton gradient to produce ATP. In photosynthesis, the Respiratory Complex I homologue, Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across thylakoid membranes. However, little is known about the PS-CI molecular mechanism and attempts to understand its function have previously been frustrated by its large size and high lability. Here, we overcome these challenges by pushing the limits in sample size and spectroscopic sensitivity, to determine arguably the most important property of any electron transport enzyme - the reduction potentials of its cofactors, in this case the iron-sulphur clusters of PS-CI (N0, N1 and N2), and unambiguously assign them to the structure using double electron-electron resonance. We have thus determined the bioenergetics of the electron transfer relay and provide insight into the mechanism of PS-CI, laying the foundations for understanding of how this important bioenergetic complex functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metabolismo Energético , Proteínas Hierro-Azufre/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Proteínas Hierro-Azufre/ultraestructura , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/ultraestructura , Synechocystis/metabolismo
2.
Photosynth Res ; 144(2): 261-272, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32076914

RESUMEN

The phycobilisome (PBS) serves as the major light-harvesting system, funnelling excitation energy to both photosystems (PS) in cyanobacteria and red algae. The picosecond kinetics involving the excitation energy transfer has been studied within the isolated systems and intact filaments of the cyanobacterium Anabaena variabilis PCC 7120. A target model is proposed which resolves the dynamics of the different chromophore groups. The energy transfer rate of 8.5 ± 1.0/ns from the rod to the core is the rate-limiting step, both in vivo and in vitro. The PBS-PSI-PSII supercomplex reveals efficient excitation energy migration from the low-energy allophycocyanin, which is the terminal emitter, in the PBS core to the chlorophyll a in the photosystems. The terminal emitter of the phycobilisome transfers energy to both PSI and PSII with a rate of 50 ± 10/ns, equally distributing the solar energy to both photosystems. Finally, the excitation energy is trapped by charge separation in the photosystems with trapping rates estimated to be 56 ± 6/ns in PSI and 14 ± 2/ns in PSII.


Asunto(s)
Anabaena variabilis/química , Anabaena variabilis/metabolismo , Complejo de Proteína del Fotosistema I/química , Ficobilisomas/química , Clorofila A/química , Clorofila A/metabolismo , Transferencia de Energía , Modelos Teóricos , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/aislamiento & purificación , Ficobilisomas/metabolismo , Espectrometría de Fluorescencia , Análisis Espectral/métodos , Tilacoides/química
3.
Nat Commun ; 10(1): 5021, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685819

RESUMEN

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Asunto(s)
Electrones , Rayos Láser , Proteínas de la Membrana/química , Cristalografía , Cianobacterias/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Electricidad Estática , Sincrotrones , Thermosynechococcus , Rayos X
4.
Nat Plants ; 5(3): 263-272, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30850820

RESUMEN

Photosystem I (PSI) is a highly efficient natural light-energy converter, and has diverse light-harvesting antennas associated with its core in different photosynthetic organisms. In green algae, an extremely large light-harvesting complex I (LHCI) captures and transfers energy to the PSI core. Here, we report the structure of PSI-LHCI from a green alga Bryopsis corticulans at 3.49 Å resolution, obtained by single-particle cryo-electron microscopy, which revealed 13 core subunits including subunits characteristic of both prokaryotes and eukaryotes, and 10 light-harvesting complex a (Lhca) antennas that form a double semi-ring and an additional Lhca dimer, including a novel four-transmembrane-helix Lhca. In total, 244 chlorophylls were identified, some of which were located at key positions for the fast energy transfer. These results provide a firm structural basis for unravelling the mechanisms of light-energy harvesting, transfer and quenching in the green algal PSI-LHCI, and important clues as to how PSI-LHCI has changed during evolution.


Asunto(s)
Chlorophyta/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Clorofila/química , Clorofila/metabolismo , Chlorophyta/genética , Microscopía por Crioelectrón , Transferencia de Energía , Evolución Molecular , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
5.
J Phys Chem B ; 122(33): 7943-7955, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30067356

RESUMEN

One of the fundamental problems in biophysics is whether the protein medium at room temperature can be properly treated as a fluid dielectric or whether its dynamics is determined by a highly ordered molecular structure resembling the properties of crystalline and amorphous solids. Here, we measured the recombination between reduced A1 and the oxidized chlorophyll special pair P700 over a wide temperature range using preparations of photosystem I from the cyanobacterium Synechococcus sp. PCC 7002 depleted of the iron-sulfur clusters. We found that the dielectric properties of the protein matrix in early electron transfer reactions of photosystem I resemble the behavior of solids that require an implicit treatment of electron-phonon coupling even at ambient temperatures. The quantum effects of electron-phonon coupling in proteins could account for a variety of phenomena, such as the weak sensitivity of electron transfer in pigment-protein complexes to changing environmental conditions including temperature, driving force, polarity, and chemical composition.


Asunto(s)
Proteínas Bacterianas/química , Electrones , Fonones , Complejo de Proteína del Fotosistema I/química , Proteínas Bacterianas/aislamiento & purificación , Clorofila/química , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Teoría Cuántica , Synechococcus/enzimología , Temperatura , Vitamina K 1/química
6.
Nat Commun ; 9(1): 2439, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934511

RESUMEN

In oxygenic photosynthesis, light energy is converted into redox energy by two photosystems (PSI and PSII). PSI forms one of the largest multiprotein complexes in thylakoid membranes consisting of a core complex, peripheral light-harvesting complexes (LHCIs) and cofactors. Although the high-resolution structure of the PSI-LHCI complex has been determined, the assembly process remains unclear due to the rapid nature of the assembly process. Here we show that two conserved chloroplast-encoded auxiliary factors, Ycf3 and Ycf4, form modules that mediate PSI assembly. The first module consists of the tetratricopeptide repeat protein Ycf3 and its interacting partner, Y3IP1, and mainly facilitates the assembly of reaction center subunits. The second module consists of oligomeric Ycf4 and facilitates the integration of peripheral PSI subunits and LHCIs into the PSI reaction center subcomplex. We reveal that these two modules are major mediators of the PSI-LHCI assembly process.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas Protozoarias/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Plantas Modificadas Genéticamente , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Análisis Espectral , Tilacoides/metabolismo
7.
Methods Mol Biol ; 1696: 137-145, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086401

RESUMEN

The isolation of thylakoid membranes, including intact membrane protein complexes, from heterocysts of filamentous cyanobacteria such as Nostoc punctiforme, is described. Protocols for BN-PAGE/SDS-PAGE 2-D electrophoresis are not included. However, the chapter ends with advisory notes on sample preparation for blue-native PAGE of thylakoid membrane proteins, which can then be used together with any standard protocol.


Asunto(s)
Fraccionamiento Celular/métodos , Cianobacterias/citología , Tilacoides/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Cianobacterias/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Fijación del Nitrógeno , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Sonicación
8.
Sci Rep ; 7(1): 13214, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038514

RESUMEN

In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.


Asunto(s)
Alveolados/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/fisiología , Alveolados/genética , Evolución Molecular , Eliminación de Gen , Espectrometría de Masas , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Filogenia , Superóxido Dismutasa/metabolismo , Tilacoides/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1858(11): 895-905, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28823462

RESUMEN

The ultrafast primary charge separation in Photosystem I (PS I) excited by femtosecond pulses centered at 720 and 760nm was studied by pump-to-probe laser spectroscopy. The absorbance in the red edge of PS I absorption spectrum has an unusual exponential dependence on wavelength. The cutoff of short wavelength components of 760nm pulse allows direct excitation of reaction center chlorophyll molecules without involvement of light-harvesting antenna. The transient spectrum manifests the features of the primary ion-radical pair P700+A0- at time delay <180fs, followed by formation of the secondary pair P700+A1- with a characteristic time of 26ps. The obtained data are rationalized in the framework of adiabatic three-state model that includes the chlorophyll dimer P700 and two symmetrically arranged nearest chlorophyll molecules of A0. The arrangement of chlorophylls results in strong electronic coupling between P700 and A0. Excitation in the maximum of P700 absorption generates electronic states with the highest contribution from P700*, whereas excitation in the far-red edge predominantly generates charge transfer state P700+A0- in both branches of redox-cofactors. The three-level model accounts for a flat-bottomed potential surface of the excited state and adiabatic character of electron transfer between P700 and A0, providing a microscopic explanation of the ultrafast formation of P700+A0- and exponential decline of PS I absorption.


Asunto(s)
Clorofila/química , Electrones , Complejo de Proteína del Fotosistema I/química , Tilacoides/química , Clorofila/metabolismo , Transporte de Electrón , Cinética , Luz , Oxidación-Reducción , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Análisis Espectral/métodos , Synechocystis/química , Synechocystis/metabolismo , Tilacoides/metabolismo
10.
J Biol Chem ; 292(28): 11850-11860, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28559282

RESUMEN

Cyclic electron flow around photosystem I (CEF) is critical for balancing the photosynthetic energy budget of the chloroplast by generating ATP without net production of NADPH. We demonstrate that the chloroplast NADPH dehydrogenase complex, a homolog to respiratory Complex I, pumps approximately two protons from the chloroplast stroma to the lumen per electron transferred from ferredoxin to plastoquinone, effectively increasing the efficiency of ATP production via CEF by 2-fold compared with CEF pathways involving non-proton-pumping plastoquinone reductases. By virtue of this proton-pumping stoichiometry, we hypothesize that NADPH dehydrogenase not only efficiently contributes to ATP production but operates near thermodynamic reversibility, with potentially important consequences for remediating mismatches in the thylakoid energy budget.


Asunto(s)
Arabidopsis/enzimología , Cloroplastos/enzimología , Modelos Moleculares , NADPH Deshidrogenasa/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/enzimología , Spinacia oleracea/enzimología , Adenosina Trifosfato/metabolismo , Algoritmos , Biocatálisis , Dominio Catalítico , Transporte de Electrón , Ferredoxinas/química , Ferredoxinas/metabolismo , Cinética , NADPH Deshidrogenasa/química , NADPH Deshidrogenasa/aislamiento & purificación , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Plastoquinona/química , Plastoquinona/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Especificidad de la Especie , Termodinámica
11.
Biochim Biophys Acta Bioenerg ; 1858(7): 510-518, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28478116

RESUMEN

The function of xanthophylls in the organisation and structure of the photosynthetic complexes is not completely clarified yet. Recently, we observed a reduced level of the photosystem oligomers upon xanthophyll deficiency, although xanthophylls are not considered to be part of the photosynthetic complexes of cyanobacteria. The present study aimed at further investigating the relationship between xanthophylls and photosytem I (PSI) complex in the cyanobacterium Synechocystis sp. PCC 6803. Interestingly, we recorded the presence of echinenone and zeaxanthin in the isolated PSI trimers. These two xanthophyll species are among the most abundant xanthophylls in this cyanobacterial species. Various xanthophyll biosynthesis mutants were used to investigate the specific role of these xanthophylls. Our spectroscopic results revealed specific structural changes manifested in altered pigment-pigment or pigment-protein interactions within PSI complex in the absence of zeaxanthin and echinenone. These structural modifications of the complexes seem to destabilize the PSI trimeric complexes and eventually result in an increased propensity for monomerization. Our results clearly demonstrate that xanthophylls are important for the fine-tuning of the PSI trimer structure. These xanthophylls could be part of the complex or be embedded in the membrane in the vicinity of PSI.


Asunto(s)
Proteínas Bacterianas/química , Carotenoides/fisiología , Complejo de Proteína del Fotosistema I/química , Synechocystis/metabolismo , Zeaxantinas/fisiología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Centrifugación por Gradiente de Densidad , Dicroismo Circular , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/análisis , Unión Proteica , Multimerización de Proteína , Espectrometría de Fluorescencia , Tilacoides/química , beta Caroteno/análisis
12.
Photosynth Res ; 133(1-3): 201-214, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28405862

RESUMEN

Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.


Asunto(s)
Complejos de Proteína Captadores de Luz/aislamiento & purificación , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Rhodophyta/metabolismo , Secuencia de Aminoácidos , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Péptidos/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Espectrometría de Fluorescencia
13.
J Phys Chem B ; 119(43): 13888-96, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26226187

RESUMEN

Single-molecule spectroscopy at low temperature was used to study the spectral properties, heterogeneities, and spectral dynamics of the chlorophyll a (Chl a) molecules responsible for the fluorescence emission of photosystem I monomers (PS I-M) from the cyanobacterium Thermosynechococcus elongatus. The fluorescence spectra of single PS I-M are dominated by several red-shifted chlorophyll a molecules named C708 and C719. The emission spectra show broad spectral distributions and several zero-phonon lines (ZPLs). Compared with the spectra of the single PS I trimers, some contributions are missing due to the lower number of C719 Chl's in monomers. Polarization-dependent measurements show an almost perpendicular orientation between the emitters corresponding to C708 and C719. These contributions can be assigned to chlorophyll dimers B18B19, B31B32, and B32B33.


Asunto(s)
Complejo de Proteína del Fotosistema I/química , Synechococcus/enzimología , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Espectrometría de Fluorescencia , Temperatura , Factores de Tiempo
14.
J Biol Chem ; 290(30): 18429-37, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26055710

RESUMEN

Styrene-maleic acid copolymer was used to effect a non-detergent partial solubilization of thylakoids from spinach. A high density membrane fraction, which was not solubilized by the copolymer, was isolated and was highly enriched in the Photosystem (PS) I-light-harvesting chlorophyll (LHC) II supercomplex and depleted of PS II, the cytochrome b6/f complex, and ATP synthase. The LHC II associated with the supercomplex appeared to be energetically coupled to PS I based on 77 K fluorescence, P700 photooxidation, and PS I electron transport light saturation experiments. The chlorophyll (Chl) a/b ratio of the PS I-LHC II membranes was 3.2 ± 0.9, indicating that on average, three LHC II trimers may associate with each PS I. The implication of these findings within the context of higher plant PS I antenna organization is discussed.


Asunto(s)
Cloroplastos/química , Complejo de Citocromo b6f/aislamiento & purificación , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Membrana Celular/química , ATPasas de Translocación de Protón de Cloroplastos/química , Complejo de Citocromo b6f/química , Luz , Complejos de Proteína Captadores de Luz/química , Anhídridos Maleicos/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Poliestirenos/química , Espectrometría de Fluorescencia , Spinacia oleracea/química , Tilacoides/química
15.
Biochem Cell Biol ; 93(3): 199-209, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25600216

RESUMEN

The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.


Asunto(s)
Chlorella/fisiología , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Plantas Tolerantes a la Sal/química , Centrifugación por Gradiente de Densidad , Chlamydomonas reinhardtii/fisiología , Chlorella/química , Chlorella/ultraestructura , Clorofila/metabolismo , Metabolismo de los Lípidos , Microscopía Electrónica de Transmisión , Nitrógeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/aislamiento & purificación
16.
Arch Biochem Biophys ; 550-551: 50-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24769336

RESUMEN

Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-ß-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein-detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI-DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI-DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Detergentes/química , Glucósidos/química , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema I/química , Proteínas Bacterianas/aislamiento & purificación , Cianobacterias/enzimología , Deuterio/química , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Conformación Molecular , Difracción de Neutrones , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Soluciones
17.
Photosynth Res ; 120(3): 311-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24599394

RESUMEN

Surfactants play important roles in the preparation, structural, and functional research of membrane proteins, and solubilizing and isolating membrane protein, while keeping their structural integrity and activity intact is complicated. The commercial n-Dodecyl-ß-D-maltoside (DDM) and Triton X-100 (TX) were used as solubilizers to extract and purify trimeric photosystem I (PSI) complex, an important photosynthetic membrane protein complex attracting broad interests. With an optimized procedure, TX can be used as an effective surfactant to isolate and purify PSI, as a replace of the much more expensive DDM. A mechanism was proposed to interpret the solubilization process at surfactant concentrations lower than the critical solubilization concentration. PSI-TX and PSI-DDM had identical polypeptide bands, pigment compositions, oxygen consumption, and photocurrent activities. This provides an alternative procedure and paves a way for economical and large-scale trimeric PSI preparation.


Asunto(s)
Octoxinol , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Spirulina/metabolismo , Tensoactivos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Clorofila/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Solubilidad , Espectrometría de Fluorescencia , Spirulina/química , Tilacoides/metabolismo
18.
J Phys Chem B ; 118(10): 2703-11, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24547776

RESUMEN

Photoactivity of native trimeric, and non-native monomeric Photosystem I (PSI) extracted from Thermosynechococcus elongatus is compared in a photoelectrochemical system. The PSI monomer is isolated by disassembling a purified PSI trimer using a freeze-thaw technique in presence of the short-chain surfactant, octylthioglucoside. Photoactive electrodes are constructed with PSI, functioning as both light absorber and charge-separator, embedded within a conductive polymer film. Despite structural differences between PSI trimers and monomers, electrodes cast with equal chlorophyll-a concentration generate similar photoactivities. Photoaction spectra show that all photocurrent derived from electrodes of PSI and conductive polymer originates solely from PSI with no photocurrent caused by redox mediators in the conductive polymer film. Longevity studies show that the two forms of PSI photodegrade at the same rate while exposed to equal intensities of 676 nm light. Direct photo-oxidation measurements indicate that PSI's monomeric form has fewer light harvesting antennae than trimer, and also shows energy sharing between monomeric subunits in the trimer. The structure of PSI is also found to impact cell performance when applying light at incident powers above 1.5 mW/cm(2) due to the reduced optical cross-section in the monomer, causing saturation at lower light intensities than the trimer.


Asunto(s)
Procesos Fotoquímicos , Complejo de Proteína del Fotosistema I/química , Absorción Fisicoquímica , Anisotropía , Clorofila/química , Clorofila A , Cianobacterias , Electrodos , Congelación , Luz , Oxidación-Reducción/efectos de la radiación , Fotólisis , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Polímeros , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Análisis Espectral
19.
Plant J ; 77(4): 568-76, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24313886

RESUMEN

Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI-NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo-atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low-abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI-NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.


Asunto(s)
Hordeum/enzimología , Complejos de Proteína Captadores de Luz/química , NADPH Deshidrogenasa/química , Complejo de Proteína del Fotosistema I/química , Transporte de Electrón , Ferredoxinas/metabolismo , Hordeum/química , Hordeum/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Complejos de Proteína Captadores de Luz/metabolismo , Microscopía Electrónica , Modelos Moleculares , NAD/metabolismo , NADPH Deshidrogenasa/aislamiento & purificación , NADPH Deshidrogenasa/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/efectos de la radiación , Tilacoides/metabolismo
20.
Science ; 342(6162): 1104-7, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24288334

RESUMEN

In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Ficobilisomas/química , Synechocystis/enzimología , Reactivos de Enlaces Cruzados/química , Transferencia de Energía , Fluorescencia , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Ficobilisomas/genética , Ficobilisomas/aislamiento & purificación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA