Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6325, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060282

RESUMEN

Photosystem I (PSI) from Fittonia albivenis, an Acanthaceae ornamental plant, is notable among green plants for its red-shifted emission spectrum. Here, we solved the structure of a PSI-light harvesting complex I (LHCI) supercomplex from F. albivenis at 2.46-Å resolution using cryo-electron microscopy. The supercomplex contains a core complex of 14 subunits and an LHCI belt with four antenna subunits (Lhca1-4) similar to previously reported angiosperm PSI-LHCI structures; however, Lhca3 differs in three regions surrounding a dimer of low-energy chlorophylls (Chls) termed red Chls, which absorb far-red beyond visible light. The unique amino acid sequences within these regions are exclusively shared by plants with strongly red-shifted fluorescence emission, suggesting candidate structural elements for regulating the energy state of red Chls. These results provide a structural basis for unraveling the mechanisms of light harvest and transfer in PSI-LHCI of under canopy plants and for designing Lhc to harness longer-wavelength light in the far-red spectral range.


Asunto(s)
Microscopía por Crioelectrón , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema I , Secuencia de Aminoácidos , Clorofila/metabolismo , Clorofila/química , Luz , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Acanthaceae
2.
Nature ; 616(7955): 199-206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922595

RESUMEN

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Asunto(s)
Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Ficobilisomas , Porphyridium , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/ultraestructura , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/ultraestructura , Ficobilisomas/química , Ficobilisomas/metabolismo , Ficobilisomas/ultraestructura , Porphyridium/química , Porphyridium/enzimología , Porphyridium/metabolismo , Porphyridium/ultraestructura , Microscopía por Crioelectrón , Imagen Individual de Molécula
3.
Commun Biol ; 4(1): 1380, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887518

RESUMEN

Water molecules play a pivotal functional role in photosynthesis, primarily as the substrate for Photosystem II (PSII). However, their importance and contribution to Photosystem I (PSI) activity remains obscure. Using a high-resolution cryogenic electron microscopy (cryo-EM) PSI structure from a Chlamydomonas reinhardtii temperature-sensitive photoautotrophic PSII mutant (TSP4), a conserved network of water molecules - dating back to cyanobacteria - was uncovered, mainly in the vicinity of the electron transport chain (ETC). The high-resolution structure illustrated that the water molecules served as a ligand in every chlorophyll that was missing a fifth magnesium coordination in the PSI core and in the light-harvesting complexes (LHC). The asymmetric distribution of the water molecules near the ETC branches modulated their electrostatic landscape, distinctly in the space between the quinones and FX. The data also disclosed the first observation of eukaryotic PSI oligomerisation through a low-resolution PSI dimer that was comprised of PSI-10LHC and PSI-8LHC.


Asunto(s)
Chlamydomonas/genética , Mutación , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/genética , Microscopía por Crioelectrón , Temperatura
4.
Nat Commun ; 12(1): 5387, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508071

RESUMEN

Photosynthesis and respiration rely upon a proton gradient to produce ATP. In photosynthesis, the Respiratory Complex I homologue, Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across thylakoid membranes. However, little is known about the PS-CI molecular mechanism and attempts to understand its function have previously been frustrated by its large size and high lability. Here, we overcome these challenges by pushing the limits in sample size and spectroscopic sensitivity, to determine arguably the most important property of any electron transport enzyme - the reduction potentials of its cofactors, in this case the iron-sulphur clusters of PS-CI (N0, N1 and N2), and unambiguously assign them to the structure using double electron-electron resonance. We have thus determined the bioenergetics of the electron transfer relay and provide insight into the mechanism of PS-CI, laying the foundations for understanding of how this important bioenergetic complex functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metabolismo Energético , Proteínas Hierro-Azufre/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Proteínas Hierro-Azufre/ultraestructura , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/ultraestructura , Synechocystis/metabolismo
5.
J Integr Plant Biol ; 63(10): 1740-1752, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34002536

RESUMEN

Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.


Asunto(s)
Clorofila/metabolismo , Cianobacterias/química , Feofitinas/metabolismo , Complejo de Proteína del Fotosistema I/química , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Transporte de Electrón , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Estructura Cuaternaria de Proteína
6.
Plant Physiol ; 186(4): 2124-2136, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33944951

RESUMEN

Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.


Asunto(s)
Diatomeas/ultraestructura , Fotosíntesis , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/ultraestructura , Tilacoides/ultraestructura , Diatomeas/metabolismo
7.
Plant Cell Physiol ; 62(7): 1073-1081, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33768246

RESUMEN

Most of life's energy comes from sunlight, and thus, photosynthesis underpins the survival of virtually all life forms. The light-driven electron transfer at photosystem I (PSI) is certainly the most important generator of reducing power at the cellular level and thereby largely determines the global amount of enthalpy in living systems (Nelson 2011). The PSI is a light-driven plastocyanin:ferredoxin oxidoreductase, which is embedded into thylakoid membranes of cyanobacteria and chloroplasts of eukaryotic photosynthetic organism. Structural determination of complexes of the photosynthetic machinery is vital for the understanding of its mode of action. Here, we describe new structural and functional insights into PSI and associated light-harvesting proteins, with a focus on the plasticity of PSI.


Asunto(s)
Complejo de Proteína del Fotosistema I/fisiología , Adaptación Fisiológica , Microscopía por Crioelectrón , Complejo de Citocromo b6f/metabolismo , Complejo de Citocromo b6f/ultraestructura , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Plantas/metabolismo , Estructura Terciaria de Proteína
8.
Commun Biol ; 4(1): 304, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686186

RESUMEN

A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Clorofila/química , Microscopía por Crioelectrón , Complejo de Proteína del Fotosistema I/ultraestructura , Proteínas Bacterianas/metabolismo , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Complejo de Proteína del Fotosistema I/metabolismo , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Thermosynechococcus/metabolismo , Thermosynechococcus/ultraestructura
9.
Nat Commun ; 12(1): 1100, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597543

RESUMEN

Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants. Here we report the cryo-electron microscopy structure of a PSI-LHCI-LHCII supercomplex in state 2 from C. reinhardtii at 3.42 Å resolution. The result reveals that the PSI-LHCI-LHCII of C. reinhardtii binds two LHCII trimers in addition to ten LHCI subunits. The PSI core subunits PsaO and PsaH, which were missed or not well-resolved in previous Cr-PSI-LHCI structures, are observed. The present results reveal the organization and assembly of PSI core subunits, LHCI and LHCII, pigment arrangement, and possible pathways of energy transfer from peripheral antennae to the PSI core.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/ultraestructura , Clorofila/metabolismo , Microscopía por Crioelectrón , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/ultraestructura , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Tilacoides/metabolismo , Tilacoides/ultraestructura
10.
Nat Plants ; 6(10): 1300-1305, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020607

RESUMEN

The ability of photosynthetic organisms to use sunlight as a sole source of energy is endowed by two large membrane complexes-photosystem I (PSI) and photosystem II (PSII). PSI and PSII are the fundamental components of oxygenic photosynthesis, providing oxygen, food and an energy source for most living organisms on Earth. Currently, high-resolution crystal structures of these complexes from various organisms are available. The crystal structures of megadalton complexes have revealed excitation transfer and electron-transport pathways within the various complexes. PSI is defined as plastocyanin-ferredoxin oxidoreductase but a high-resolution structure of the entire triple supercomplex is not available. Here, using a new cryo-electron microscopy technique, we solve the structure of native plant PSI in complex with its electron donor plastocyanin and the electron acceptor ferredoxin. We reveal all of the contact sites and the modes of interaction between the interacting electron carriers and PSI.


Asunto(s)
Ferredoxinas/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Pisum sativum/ultraestructura , Plastocianina/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Electrones , Ferredoxinas/química , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Plastocianina/química , Conformación Proteica
11.
Nat Commun ; 11(1): 2481, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424145

RESUMEN

Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.


Asunto(s)
Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/ultraestructura , Transferencia de Energía , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Complejo de Proteína del Fotosistema I/ultraestructura , Unión Proteica , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
12.
Nat Commun ; 10(1): 4929, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666526

RESUMEN

Photosystem I (PSI) functions to harvest light energy for conversion into chemical energy. The organisation of PSI is variable depending on the species of organism. Here we report the structure of a tetrameric PSI core isolated from a cyanobacterium, Anabaena sp. PCC 7120, analysed by single-particle cryo-electron microscopy (cryo-EM) at 3.3 Å resolution. The PSI tetramer has a C2 symmetry and is organised in a dimer of dimers form. The structure reveals interactions at the dimer-dimer interface and the existence of characteristic pigment orientations and inter-pigment distances within the dimer units that are important for unique excitation energy transfer. In particular, characteristic residues of PsaL are identified to be responsible for the formation of the tetramer. Time-resolved fluorescence analyses showed that the PSI tetramer has an enhanced excitation-energy quenching. These structural and spectroscopic findings provide insights into the physiological significance of the PSI tetramer and evolutionary changes of the PSI organisations.


Asunto(s)
Anabaena/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína , Imagen Individual de Molécula , Espectrometría de Fluorescencia
13.
Nat Plants ; 5(6): 626-636, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182847

RESUMEN

In plants and green algae, the core of photosystem I (PSI) is surrounded by a peripheral antenna system consisting of light-harvesting complex I (LHCI). Here we report the cryo-electron microscopic structure of the PSI-LHCI supercomplex from the green alga Chlamydomonas reinhardtii. The structure reveals that eight Lhca proteins form two tetrameric LHCI belts attached to the PsaF side while the other two Lhca proteins form an additional Lhca2/Lhca9 heterodimer attached to the opposite side. The spatial arrangement of light-harvesting pigments reveals that Chlorophylls b are more abundant in the outer LHCI belt than in the inner LHCI belt and are absent from the core, thereby providing the downhill energy transfer pathways to the PSI core. PSI-LHCI is complexed with a plastocyanin on the patch of lysine residues of PsaF at the luminal side. The assembly provides a structural basis for understanding the mechanism of light-harvesting, excitation energy transfer of the PSI-LHCI supercomplex and electron transfer with plastocyanin.


Asunto(s)
Chlamydomonas reinhardtii/ultraestructura , Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/ultraestructura , Transferencia de Energía , Proteínas de la Membrana/química , Modelos Moleculares , Plastocianina/química , Conformación Proteica , Especificidad de la Especie
14.
Nat Struct Mol Biol ; 26(6): 443-449, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133699

RESUMEN

Photochemical conversion in oxygenic photosynthesis takes place in two large protein-pigment complexes named photosystem II and photosystem I (PSII and PSI, respectively). Photosystems associate with antennae in vivo to increase the size of photosynthetic units to hundreds or thousands of pigments. Regulation of the interactions between antennae and photosystems allows photosynthetic organisms to adapt to their environment. In low-iron environments, cyanobacteria express IsiA, a PSI antenna, critical to their survival. Here we describe the structure of the PSI-IsiA complex isolated from the mesophilic cyanobacterium Synechocystis sp. PCC 6803. This 2-MDa photosystem-antenna supercomplex structure reveals more than 700 pigments coordinated by 51 subunits, as well as the mechanisms facilitating the self-assembly and association of IsiA with multiple PSI assemblies.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Synechocystis/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Complejo de Proteína del Fotosistema I/ultraestructura , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química
15.
Nat Plants ; 4(11): 910-919, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30374091

RESUMEN

Photosystem I of the moss Physcomitrella patens has special properties, including the capacity to undergo non-photochemical fluorescence quenching. We studied the organization of photosystem I under different light and carbon supply conditions in wild-type moss and in moss with the lhcb9 (light-harvesting complex) knockout genotype, which lacks an antenna protein endowed with red-shifted absorption forms. Wild-type moss, when grown on sugars and in low light, accumulated LHCB9 proteins and a large form of the photosystem I supercomplex, which, besides the canonical four LHCI subunits, included a LHCII trimer and four additional LHC monomers. The lhcb9 knockout produced an angiosperm-like photosystem I supercomplex with four LHCI subunits irrespective of the growth conditions. Growth in the presence of sublethal concentrations of electron transport inhibitors that caused oxidation or reduction of the plastoquinone pool prevented or promoted, respectively, the accumulation of LHCB9 and the formation of the photosystem I megacomplex. We suggest that LHCB9 is a key subunit regulating the antenna size of photosystem I and the ability to avoid the over-reduction of plastoquinone: this condition is potentially dangerous in the shaded and sunfleck-rich environment typical of mosses, whose plastoquinone pool is reduced by both photosystem II and the oxidation of sugar substrates.


Asunto(s)
Bryopsida/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Bryopsida/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/efectos de la radiación , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía Electrónica , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/metabolismo , Proteómica , Tilacoides/metabolismo
16.
Science ; 360(6393): 1109-1113, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880686

RESUMEN

Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo-electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Zea mays/enzimología , Clorofila/química , Microscopía por Crioelectrón , Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Conformación Proteica
17.
Proc Natl Acad Sci U S A ; 115(17): 4423-4428, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632169

RESUMEN

Photosystem I (PSI) is one of the two photosystems present in oxygenic photosynthetic organisms and functions to harvest and convert light energy into chemical energy in photosynthesis. In eukaryotic algae and higher plants, PSI consists of a core surrounded by variable species and numbers of light-harvesting complex (LHC)I proteins, forming a PSI-LHCI supercomplex. Here, we report cryo-EM structures of PSI-LHCR from the red alga Cyanidioschyzon merolae in two forms, one with three Lhcr subunits attached to the side, similar to that of higher plants, and the other with two additional Lhcr subunits attached to the opposite side, indicating an ancient form of PSI-LHCI. Furthermore, the red algal PSI core showed features of both cyanobacterial and higher plant PSI, suggesting an intermediate type during evolution from prokaryotes to eukaryotes. The structure of PsaO, existing in eukaryotic organisms, was identified in the PSI core and binds three chlorophylls a and may be important in harvesting energy and in mediating energy transfer from LHCII to the PSI core under state-2 conditions. Individual attaching sites of LHCRs with the core subunits were identified, and each Lhcr was found to contain 11 to 13 chlorophylls a and 5 zeaxanthins, which are apparently different from those of LHCs in plant PSI-LHCI. Together, our results reveal unique energy transfer pathways different from those of higher plant PSI-LHCI, its adaptation to the changing environment, and the possible changes of PSI-LHCI during evolution from prokaryotes to eukaryotes.


Asunto(s)
Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Rhodophyta/enzimología , Microscopía por Crioelectrón/métodos , Estructura Cuaternaria de Proteína , Rhodophyta/ultraestructura
18.
Nat Plants ; 3: 17014, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248295

RESUMEN

Four elaborate membrane complexes carry out the light reaction of oxygenic photosynthesis. Photosystem I (PSI) is one of two large reaction centres responsible for converting light photons into the chemical energy needed to sustain life. In the thylakoid membranes of plants, PSI is found together with its integral light-harvesting antenna, light-harvesting complex I (LHCI), in a membrane supercomplex containing hundreds of light-harvesting pigments. Here, we report the crystal structure of plant PSI-LHCI at 2.6 Šresolution. The structure reveals the configuration of PsaK, a core subunit important for state transitions in plants, a conserved network of water molecules surrounding the electron transfer centres and an elaborate structure of lipids bridging PSI and its LHCI antenna. We discuss the implications of the structure for energy transfer and the evolution of PSI.


Asunto(s)
Transporte de Electrón , Transferencia de Energía , Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Pisum sativum/ultraestructura , Cristalografía por Rayos X , Tilacoides
19.
Biochim Biophys Acta Bioenerg ; 1858(5): 360-365, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28237493

RESUMEN

Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.


Asunto(s)
Difracción de Neutrones , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pisum sativum/metabolismo , Dispersión del Ángulo Pequeño , Tilacoides/metabolismo , Transferencia de Energía , Concentración de Iones de Hidrógeno , Fluidez de la Membrana , Pisum sativum/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/ultraestructura , Hojas de la Planta/metabolismo , Tilacoides/ultraestructura
20.
New Phytol ; 213(2): 714-726, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27620972

RESUMEN

Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.


Asunto(s)
Secuencia Conservada , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Subunidades de Proteína/metabolismo , Estramenopilos/metabolismo , Simbiosis , Secuencia de Aminoácidos , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Biológicos , Complejo de Proteína del Fotosistema I/ultraestructura , Pigmentos Biológicos/metabolismo , Subunidades de Proteína/química , Espectrometría de Fluorescencia , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA