Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.123
1.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article En | MEDLINE | ID: mdl-38717599

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
2.
Sci Rep ; 14(1): 11108, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750162

Phytosterols are natural components of plant-based foods used as supplements because of their known cholesterol-lowering effect. However, their effects on lipoprotein subfractions and the quality of the LDL particle have not been studied in greater detail. We aimed to evaluate the effects of phytosterols supplements on lipids, lipoproteins subfractions, and on the quality of LDL. A prospective, pilot-type, open label, cross-over study, randomized 23 males in primary prevention of hypercholesterolemia to receive diet or diet plus phytosterol (2.6 g in 2 doses, with meals) for 12 weeks, when treatments were switched for another 12 weeks. Lipoprotein subfractions were analyzed by electrophoresis in polyacrylamide gel (Lipoprint System®). The Sampson equation estimated the small and dense (sd) and large and buoyant (lb) LDL subfractions from the lipid profile. Quality of LDL particle was analyzed by Z-scan and UV-vis spectroscopy. Primary outcome was the comparison of diet vs. diet plus phytosterols. Secondary outcomes assessed differences between baseline, diet and diet plus phytosterol. Non-parametric statistics were performed with p < 0.05. There was a trend to reduction on HDL-7 (p = 0.05) in diet plus phytosterol arm, with no effects on the quality of LDL particles. Heatmap showed strong correlations (ρ > 0.7) between particle size by different methods with both interventions. Diet plus phytosterol reduced TC, increased HDL-c, and reduced IDL-B, whereas diet increased HDL7, and reduced IDL-B vs. baseline (p < 0.05, for all). Phytosterol supplementation demonstrated small beneficial effects on HDL-7 subfraction, compared with diet alone, without effects on the quality of LDL particles.This trial is registered in Clinical Trials (NCT06127732) and can be accessed at https://clinicaltrials.gov .


Cross-Over Studies , Dietary Supplements , Hypercholesterolemia , Phytosterols , Phytosterols/pharmacology , Phytosterols/administration & dosage , Humans , Male , Middle Aged , Hypercholesterolemia/diet therapy , Hypercholesterolemia/blood , Hypercholesterolemia/drug therapy , Lipoproteins, LDL/blood , Prospective Studies , Adult , Cholesterol, LDL/blood , Pilot Projects , Lipoproteins/blood
3.
PLoS One ; 19(5): e0297788, 2024.
Article En | MEDLINE | ID: mdl-38743661

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Dietary Supplements , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Phytosterols , Animals , Phytosterols/pharmacology , Phytosterols/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Esters/pharmacology , Male , Cholesterol/blood , Triglycerides/blood , Animal Feed/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood
4.
Biomolecules ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38785949

Clickable chemical tools are essential for studying the localization and role of biomolecules in living cells. For this purpose, alkyne-based close analogs of the respective biomolecules are of outstanding interest. Here, in the field of phytosterols, we present the first alkyne derivative of sitosterol, which fulfills the crucial requirements for such a chemical tool as follows: very similar in size and lipophilicity to the plant phytosterols, and correct absolute configuration at C-24. The alkyne sitosterol FB-DJ-1 was synthesized, starting from stigmasterol, which comprised nine steps, utilizing a novel alkyne activation method, a Johnson-Claisen rearrangement for the stereoselective construction of a branched sterol side chain, and a Bestmann-Ohira reaction for the generation of the alkyne moiety.


Alkynes , Sitosterols , Sitosterols/chemistry , Sitosterols/chemical synthesis , Alkynes/chemistry , Plant Cells/metabolism , Plant Cells/chemistry , Phytosterols/chemical synthesis , Phytosterols/chemistry , Click Chemistry/methods
5.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612391

C19 steroids and C22 steroids are vital intermediates for the synthesis of steroid drugs. Compared with C19 steroids, C22 steroids are more suitable for synthesizing progesterone and adrenocortical hormones, albeit less developed. 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one(9-OHBA), due to its substituents at positions C-9 and C-22, is a beneficial and innovative steroid derivative for synthesizing corticosteroids. We focused on the C22 pathway in Mycobacterium fortuitum ATCC 35855, aiming to develop a productive strain that produces 9-OHBA. We used a mutant strain, MFΔkstD, that knocked out kstds from Mycobacterium fortuitum ATCC 35855 named MFKD in this study as the original strain. Hsd4A and FadA5 are key enzymes in controlling the C19 metabolic pathway of steroids in Mycobacterium fortuitum ATCC 35855. After knocking out hsd4A, MFKDΔhsd4A accumulated 81.47% 9-OHBA compared with 4.13% 9-OHBA in the strain MFKD. The double mutant MFKDΔhsd4AΔfadA5 further improved the selectivity of 9-OHBA to 95.13%, and 9α-hydroxy-4-androstenedione (9-OHAD) decreased to 0.90% from 4.19%. In the end, we obtained 6.81 g/L 9-OHBA from 10 g/L phytosterols with a molar yield of 80.33%, which showed the best performance compared with formerly reported strains.


Mycobacterium fortuitum , Phytosterols , Mycobacterium fortuitum/genetics , Androstenedione , Molar , Progesterone
6.
Food Res Int ; 184: 114269, 2024 May.
Article En | MEDLINE | ID: mdl-38609247

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Anthocyanins , Fat Substitutes , Phytosterols , Emulsions , Polysorbates , Quercetin , Gels
7.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675575

BACKGROUND: Myrtle (Myrtus communis L.) is a coastal Mediterranean aromatic medicinal plant rich in essential oil components, flavonoids, and phenolic acids. Studies highlight the potential health benefits of myrtle bioactive compounds with antioxidant and antiproliferative properties. Since limited research exists on myrtle fruit's lipid fraction, the aim of this study was to apply supercritical CO2 extraction to obtain bioactive compounds from myrtle berries focusing on the fatty acids, sterols, and essential oils. METHODS: The optimization of the supercritical CO2 extraction of myrtle fruit using CO2 as solvent was carried out using the response surface methodology with Box-Behnken experimental design. The following conditions were tested: temperature (40, 50, and 60 °C), pressure (200, 300, and 400 bar), and flow rate (20, 30, and 40 g min-1) on the yield of lipid extract as well as on the yield of fatty acids, phytosterols, and volatiles present in the extract and constituting its bioactive potential. RESULTS: In the extracts examined, 36 fatty acids, 7 phytosterols, and 13 volatiles were identified. The average yield of the extract was 5.20%, the most abundant identified fatty acid was essential cis-linolenic acid (76.83%), almost 90% of the total phytosterols were ß-sitosterol (12,465 mg kg-1), while myrtenyl acetate (4297 mg kg-1) was the most represented volatile compound. The optimal process conditions obtained allow the formulation of extracts with specific compositions.


Carbon Dioxide , Fatty Acids , Fruit , Myrtus , Phytosterols , Phytosterols/isolation & purification , Phytosterols/chemistry , Phytosterols/analysis , Myrtus/chemistry , Carbon Dioxide/chemistry , Fatty Acids/chemistry , Fatty Acids/analysis , Fatty Acids/isolation & purification , Fruit/chemistry , Plant Extracts/chemistry , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Chromatography, Supercritical Fluid/methods , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis
8.
Food Funct ; 15(9): 4905-4924, 2024 May 07.
Article En | MEDLINE | ID: mdl-38598180

In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17ß-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.


Adiposity , Curcumin , Dietary Supplements , Hesperidin , Ovariectomy , Phytosterols , Animals , Female , Hesperidin/pharmacology , Hesperidin/administration & dosage , Phytosterols/pharmacology , Phytosterols/administration & dosage , Rats , Curcumin/pharmacology , Curcumin/administration & dosage , Adiposity/drug effects , Leptin/blood , Rats, Sprague-Dawley , Humans , Rats, Wistar
9.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594656

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Phytosterols , Progesterone , Cattle , Animals , Pregnenolone/metabolism , Sterols , Steroids , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Mammals/metabolism , Ethers
10.
Trends Plant Sci ; 29(5): 524-534, 2024 May.
Article En | MEDLINE | ID: mdl-38565452

Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.


Phytosterols , Plants , Plants/metabolism , Plants/microbiology , Phytosterols/metabolism , Sterols/metabolism , Host-Pathogen Interactions , Host Microbial Interactions/physiology , Signal Transduction
11.
Int J Biol Macromol ; 268(Pt 2): 131942, 2024 May.
Article En | MEDLINE | ID: mdl-38685546

The interaction of monoglycerides and phytosterols in olive- and coconut oil on the structuring of oleogels was analyzed. Specifically, bigels with gelatin hydrogel in different ratios (40:60 and 60:40 w/w) were formed. The physicochemical and microstructural attributes of these systems were assessed. The olive oil to coconut oil ratio (0-100 w/w) and the added oleogelators affected the crystal structure and the mechanical properties of the oleogels. Polarized light microscopy revealed that the addition of coconut oil created a denser triglycerides crystal network and the presence of phytosterols created more needle-like crystals, enhancing the textural properties of the oleogels and of the resulting bigels. The hardness of the oleogels ranged from 0.50 N to 1.24 N and for bigels was 5.96-36.75 N. Bigels hardness decreased as the oleogel ratio in the bigel increased. Microscopy and FTIR revealed that the addition of coconut oil in oleogels hampered the formation of a distinct crystalline monoglycerides network. Also, the absence of new peaks in the bigels indicated that the two structured phases interact with each other mostly physically, without the formation of new chemical bonds. Consequently, the oleogels and bigels developed, comprise a promising hard fat substitute with improved nutritional profile.


Coconut Oil , Olive Oil , Organic Chemicals , Organic Chemicals/chemistry , Coconut Oil/chemistry , Olive Oil/chemistry , Monoglycerides/chemistry , Gelatin/chemistry , Mechanical Phenomena , Triglycerides/chemistry , Phytosterols/chemistry , Hardness , Spectroscopy, Fourier Transform Infrared
12.
Nutrients ; 16(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38613098

The main objective of this study was to determine plasma levels of PS and to study SNVs rs41360247, rs4245791, rs4148217, and rs11887534 of ABCG8 and the r657152 SNV at the ABO blood group locus in a sample of a population treated at our hospital, and to determine whether these SNVs are related to plasma PS concentrations. The secondary objective was to establish the variables associated with plasma PS concentrations in adults. Participants completed a dietary habit questionnaire and a blood sample was collected to obtain the following variables: campesterol, sitosterol, sitostanol, lanosterol, stigmasterol, biochemical parameters, and the SNVs. In addition, biometric and demographic variables were also recorded. In the generalized linear model, cholesterol and age were positively associated with total PS levels, while BMI was negatively related. For rs4245791, homozygous T allele individuals showed a significantly lower campesterol concentration compared with C homozygotes, and the GG alleles of rs657152 had the lowest levels of campesterol compared with the other alleles of the SNV. Conclusions: The screening of certain SNVs could help prevent the increase in plasma PS and maybe PNALD in some patients. However, further studies on the determinants of plasma phytosterol concentrations are needed.


Phytosterols , Adult , Humans , Lanosterol , Stigmasterol , ABO Blood-Group System , Alleles
13.
Biomed Mater ; 19(3)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38518371

The aim of the current study was to synthesize silver nanoparticles (PLSNPs) using green technology by means of phytosterol-enriched fractions fromBlumea laceraextracts (EAF) and evaluate their toxicological and anti-haemorrhoidal potential. The average size of the synthesized particles was found to be 85.64 nm by scanning electron microscopy and transmission electron microscopy. Energy dispersive spectroscopy showed the elemental composition of PLSNPs to be 12.59% carbon and 87.41% silver, indicating the capping of phytochemicals on the PLSNPs. The PLSNPs were also standardized for total phytosterol content using chemical methods and high-perfromance liquid chromatography. The PLSNPs were found to be safe up to 1000 mg kg-1as no toxicity was observed in the acute and sub-acute toxicity studies performed as per OECD guidelines. After the induction of haemorrhoids, experimental animals were treated with different doses of EAF, PLSNPs and a standard drug (Pilex) for 7 d, and on the eighth day the ameliorative potential was assessed by evaluating the haemorrhoidal (inflammatory severity index, recto-anal coefficient) and biochemical (tumour necrosis factor-alpha and interleukin-6) parameters and histology of the recto-anal tissue. The results showed that treatment with PLSNPs and Pilex significantly (p< 0.05) reduced haemorrhoidal and biochemical parameters. This was further supported by restoration of altered antioxidant status. Further, a marked reduction in the inflammatory zones along with minimal dilated blood vessels was observed in the histopathological study. The results of molecular docking studies also confirmed the amelioration of haemorrhoids via AMP-activated protein kinase (AMPK)-mediated reduction of inflammation and endothelin B receptor modification by PLSNPs. In conclusion, PLSNPs could be a good alternative for the management of haemorrhoids.


Hemorrhoids , Metal Nanoparticles , Phytosterols , Animals , Silver/chemistry , Hemorrhoids/drug therapy , Hemorrhoids/pathology , AMP-Activated Protein Kinases , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Blood Adv ; 8(10): 2466-2477, 2024 May 28.
Article En | MEDLINE | ID: mdl-38513134

ABSTRACT: Sitosterolemia is a rare autosomal recessive genetic disorder in which patients develop hypercholesterolemia and may exhibit abnormal hematologic and/or liver test results. In this disease, dysfunction of either ABCG5 or ABCG8 results in the intestinal hyperabsorption of all sterols, including cholesterol and, more specifically, plant sterols or xenosterols, as well as in the impaired ability to excrete xenosterols into the bile. It remains unknown how and why some patients develop hematologic abnormalities. Only a few unrelated patients with hematologic abnormalities at the time of diagnosis have been reported. Here, we report on 2 unrelated pedigrees who were believed to have chronic immune thrombocytopenia as their most prominent feature. Both consanguineous families showed recessive gene variants in ABCG5, which were associated with the disease by in silico protein structure analysis and clinical segregation. Hepatosplenomegaly was absent. Thrombopoietin levels and megakaryocyte numbers in the bone marrow were normal. Metabolic analysis confirmed the presence of strongly elevated plasma levels of xenosterols. Potential platelet proteomic aberrations were longitudinally assessed following dietary restrictions combined with administration of the sterol absorption inhibitor ezetimibe. No significant effects on platelet protein content before and after the onset of treatment were demonstrated. Although we cannot exclude that lipotoxicity has a direct and platelet-specific impact in patients with sitosterolemia, our data suggest that thrombocytopenia is neither caused by a lack of megakaryocytes nor driven by proteomic aberrations in the platelets themselves.


ATP Binding Cassette Transporter, Subfamily G, Member 5 , Blood Platelets , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Proteomics , Thrombocytopenia , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/complications , Hypercholesterolemia/blood , Hypercholesterolemia/genetics , Hypercholesterolemia/complications , Phytosterols/adverse effects , Phytosterols/blood , Blood Platelets/metabolism , Blood Platelets/pathology , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Intestinal Diseases/blood , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Intestinal Diseases/etiology , Intestinal Diseases/metabolism , Male , Thrombocytopenia/diagnosis , Thrombocytopenia/blood , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , Female , Proteomics/methods , Pedigree , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Adult , Proteome , Adolescent , Lipoproteins
15.
Anal Methods ; 16(15): 2278-2285, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38525815

Sterols are unsaponifiable lipids resulting from plant metabolism that exhibit interesting bioactive properties. Microalgae are a major source of specific phytosterols, most of which are still not fully characterized. The similarity in sterol structures and the existence of positional isomers make the separation of phytosterols challenging. A method was developed based on an offline two-dimensional (2D) system, reversed-phase liquid chromatography (RPLC)-supercritical fluid chromatography (SFC)/quadrupole time-of-flight (Q-ToF) mass spectrometry, for the identification of sterols in microalgae. Subsequent positive-mode MS/MS was used to confirm the identified phytosterols. The 2D chromatogram exhibited a pattern related to the positions of the double bonds, which were confirmed by standard injection, enabling structural elucidation. The analysis of the unsaponifiable fraction of two algae, namely Scenedesmus obliquus, a freshwater microalgae, and Padina pavonica, a marine macroalgae, highlighted the ability of the method to distinguish a large number of sterol isomers.


Chromatography, Supercritical Fluid , Microalgae , Phytosterols , Chromatography, Reverse-Phase/methods , Phytosterols/analysis , Tandem Mass Spectrometry/methods , Chromatography, Supercritical Fluid/methods , Sterols , Plants
16.
Plant Sci ; 343: 112062, 2024 Jun.
Article En | MEDLINE | ID: mdl-38461862

Rice is a crucial food for humans due to its high nutritional value. Phytosterols, essential components of the plant membrane lipid bilayer, play a vital role in plant growth and contribute significantly to lipid-lowering, antitumor, and immunomodulation processes. In this study, SCY1-like protein kinases 2 (SCYL2) was found to be closely related to the accumulation of phytosterols. The levels of campesterol, stigmasterol, and ß-sitosterol significantly increased in transgenic rice seeds, husks, and leaves, whereas there was a considerable reduction in scyl2 plants. Subsequent investigations revealed the crucial role of SCYL2 in plant development. Mutations in this gene led to stunted plant growth while overexpressing OsSCYL2 in Arabidopsis and rice resulted in larger leaves, taller plants, and accelerated development. When subjected to salt stress, Arabidopsis plants overexpressed OsSCYL2 showed significantly higher germination rates than wild-type plants. Similarly, transgenic rice seedlings displayed better growth than both ZH11 and mutant plants, exhibiting lower malondialdehyde (MDA) content and higher peroxidase (POD), and catalase (CAT) activities. Conversely, scyl2 plants exhibited more yellow leaves or even death. These findings suggested that OsSCYL2 proteins might be involved in phytosterols synthesis and play an important role during plant growth and development. This study provides a theoretical basis for developing functional rice.


Arabidopsis , Oryza , Phytosterols , Humans , Oryza/metabolism , Arabidopsis/metabolism , Stress, Physiological , Salt Stress , Plant Development , Phytosterols/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
17.
Alzheimers Res Ther ; 16(1): 53, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38461353

BACKGROUND: Studies have suggested that blood circulating phytosterols, plant-derived sterols analogous to cholesterol, were associated with blood lipid levels and the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). This Mendelian randomization (MR) study is performed to determine the causal effect of circulating phytosterols on AD and PD and evaluate the mediation effect of blood lipids. METHODS: Leveraging genome-wide association studies summary-level data for phytosterols, blood lipids, AD, and PD, univariable and multivariable MR (MVMR) analyses were conducted. Four types of phytosterols (brassicasterol, campesterol, sitosterol, and stigmasterol), three blood lipids parameters (high-density lipoprotein cholesterol [HDL-C], non-HDL-C, and triglyceride), two datasets for AD and PD were used. Inverse-variance weighted method was applied as the primary analysis, and false discovery rate method was used for adjustment of multiple comparisons. RESULTS: Using the largest AD dataset, genetically proxied higher levels of stigmasterol (OR = 0.593, 95%CI = 0.431-0.817, P = 0.004) and sitosterol (OR = 0.864, 95%CI = 0.791-0.943, P = 0.004) significantly correlated with a lower risk of AD. No significant associations were observed between all four types of phytosterols levels and PD. MVMR estimates showed that the above causal associations were missing after integrating the blood lipids as exposures. Sensitivity analyses confirmed the robustness of these associations, with no evidence of pleiotropy and heterogeneity. CONCLUSION: The study supports a potential beneficial role of blood stigmasterol and sitosterol in reducing the risk of AD, but not PD, which is dependent on modulating blood lipids. These insights highlight circulating stigmasterol and sitosterol as possible biomarkers and therapeutic targets for AD.


Alzheimer Disease , Parkinson Disease , Phytosterols , Humans , Sitosterols , Stigmasterol , Alzheimer Disease/genetics , Genome-Wide Association Study , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phytosterols/analysis , Cholesterol/analysis , Lipids
18.
J Agric Food Chem ; 72(14): 8247-8256, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38551065

The compound-specific determination of δ13C values [‰] by gas chromatography interfaced with isotope ratio mass spectrometry (GC-IRMS) is a powerful analytical method to indicate minute but relevant variations in the 13C/12C ratio of sample compounds. In this study, the δ13C values [‰] of individual sterols were measured in eleven different oils of C3, C4, and CAM plants (n = 33) by GC-IRMS. For this purpose, a suitable acetylation method was developed for sterols. Nine of the eleven phytosterols identified by GC with mass spectrometry (GC/MS) could be measured by GC-IRMS. The δ13C values [‰] of individual sterols and squalene of C3 plant oils were between 3‰ and >16‰ more negative (lighter in carbon) than in C4 and CAM oils. We also showed that the blending of C4 oils into C3 oils (exemplarily conducted with one olive and one corn oil) would be precisely determined by means of the δ13C value [‰] of ß-sitosterol.


Carbon , Phytosterols , Carbon Isotopes/analysis , Sterols , Plants , Oils
19.
J Oleo Sci ; 73(4): 393-409, 2024.
Article En | MEDLINE | ID: mdl-38556275

Cold-pressed oils are oils prepared from pressing plant materials with a screw or hydraulic press, yielding oils with little contamination of harmful chemicals and high content of nutrients and functional constituents. Cold-pressed oils have gained increasing recognition as food supplements for preventing and ameliorating body deterioration due to ageing and the progression of lifestyle diseases or non-communicable diseases. This article aimed to review their structure, bioactivity, and chromatographic analysis of the mostly found functional compounds in cold-pressed oils, including phytosterols, carotenoids, tocols (tocopherols and tocotrienols), phenolic compounds (flavonoids, phenolic acids, tannins, stilbenes, and lignans), and squalene.


Plant Oils , Carotenoids/analysis , Phytosterols/analysis , Plant Oils/chemistry , Tocopherols/analysis
20.
J Steroid Biochem Mol Biol ; 240: 106498, 2024 Jun.
Article En | MEDLINE | ID: mdl-38447903

Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.


Methyltransferases , Phytosterols , Triterpenes , Zea mays , Zea mays/metabolism , Phytosterols/metabolism , Phytosterols/chemistry , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Substrate Specificity , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/chemistry
...