Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.201
Filtrar
1.
Toxins (Basel) ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548713

RESUMEN

Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and effectively. We cloned the gene cce001a encoding carboxylesterase (CarE) into pPICZαA and transformed it into Pichia pastoris GS115. The target protein was successfully obtained, and CarE CCE001a could effectively degrade free gossypol with a degradation rate of 89%. When esterase was added, the exposed toxic groups of gossypol reacted with different amino acids and amines to form bound gossypol, generating substances with (M + H) m/z ratios of 560.15, 600.25, and 713.46. The molecular formula was C27H28O13, C34H36N2O6, and C47H59N3O3. The observed instability of the hydroxyl groups caused the substitution and shedding of the group, forming a substance with m/z of 488.26 and molecular formula C31H36O5. These properties render the CarE CCE001a a valid candidate for the detoxification of cotton meal. Furthermore, the findings help elucidate the degradation process of gossypol in vitro.


Asunto(s)
Carboxilesterasa , Gosipol , Mariposas Nocturnas , Animales , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Gosipol/metabolismo , Mariposas Nocturnas/enzimología , Pichia/enzimología , Pichia/genética , Biotransformación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164011

RESUMEN

Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 ∘C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Bacillus subtilis/metabolismo , Pichia/enzimología , Proteínas Recombinantes/metabolismo , Acetaldehído/metabolismo , Aldehído Oxidorreductasas/genética , Bacillus subtilis/genética , Clonación Molecular/métodos , Ingeniería Metabólica/métodos , Organismos Modificados Genéticamente , Pichia/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Vías Secretoras/genética
3.
Biotechnol J ; 17(2): e2100332, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34870891

RESUMEN

Pichia pastoris (Komagataella phaffii) is a non-conventional Crabtree-negative yeast with the capability of reaching very high cell densities in a fed-batch fermentation process. The alcohol dehydrogenase (ADH) genes of P. pastoris involved in ethanol metabolism were identified and were previously characterized. This work aimed to extend current knowledge of the regulation of the ADH2 promoter. To this end, we first determined the upstream activator (UAS) and repressor (URS) sequences of the promoter by deletion assays. Two upstream activator sites have been identified, positioned between -900 and -801 bp, and -284 and -108 bp upstream of the ADH2 transcription start site. The sequences positioned between -361 and -262 bp had a negative effect on the promoter activity and designated a repressor sequence (URS). We then demonstrated that Mxr1 (methanol expression regulator 1) transcription factor activates the ADH2 promoter through the direct interaction with UAS regions in response to ethanol. Furthermore, five different synthetic promoters were constructed by adding or deleting the regulatory sites. These synthetic promoters were tested for extracellular xylanase production at shake flask level by inducing with ethanol. These promoter variants improved the xylanase production ranging between 165% and 200% of the native promoter. The synthetic promoter 5 (SNT5) that displayed the highest activity was further evaluated at the fermenter scale. The modification in the promoter features might have several implications for industrial processes where decoupling the cell growth and product formation is advantageous.


Asunto(s)
Alcohol Deshidrogenasa , Proteínas Fúngicas , Pichia , Regiones Promotoras Genéticas , Alcohol Deshidrogenasa/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Pichia/enzimología , Pichia/genética , Saccharomycetales
4.
BMC Biotechnol ; 21(1): 37, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088291

RESUMEN

BACKGROUND: Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. METHODS: A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. RESULTS: In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol- 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. CONCLUSIONS: Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers.


Asunto(s)
Proteínas Fúngicas/química , Lacasa/química , Pichia/enzimología , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Lacasa/genética , Lacasa/metabolismo , Simulación de Dinámica Molecular , Pichia/química , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
ACS Synth Biol ; 10(6): 1360-1372, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34075757

RESUMEN

Fungal peroxygenases (UPOs) have emerged as oxyfunctionalization catalysts of tremendous interest in recent years. However, their widespread use in the field of biocatalysis is still hampered by their challenging heterologous production, substantially limiting the panel of accessible enzymes for investigation and enzyme engineering. Building upon previous work on UPO production in yeast, we have developed a combined promoter and signal peptide shuffling system for episomal high throughput UPO production in the industrially relevant, methylotrophic yeast Pichia pastoris. Eleven endogenous and orthologous promoters were shuffled with a diverse set of 17 signal peptides. Three previously described UPOs were selected as first test set, leading to the identification of beneficial promoter/signal peptide combinations for protein production. We applied the system then successfully to produce two novel UPOs: MfeUPO from Myceliophthora fergusii and MhiUPO from Myceliophthora hinnulea. To demonstrate the feasibility of the developed system to other enzyme classes, it was applied for the industrially relevant lipase CalB and the laccase Mrl2. In total, approximately 3200 transformants of eight diverse enzymes were screened and the best promoter/signal peptide combinations studied at various cofeeding, derepression, and induction conditions. High volumetric production titers were achieved by subsequent creation of stable integration lines and harnessing orthologous promoters from Hansenula polymorpha. In most cases promising yields were also achieved without the addition of methanol under derepressed conditions. To foster the use of the episomal high throughput promoter/signal peptide Pichia pastoris system, we made all plasmids available through Addgene.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Oxigenasas de Función Mixta/biosíntesis , Pichia/enzimología , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Ingeniería de Proteínas/métodos , Señales de Clasificación de Proteína/genética , Saccharomycetales/enzimología , Estudios de Factibilidad , Proteínas Fúngicas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Microorganismos Modificados Genéticamente , Oxigenasas de Función Mixta/genética , Pichia/genética , Proteínas Recombinantes/biosíntesis , Saccharomycetales/genética , Sordariales/enzimología , Sordariales/genética
6.
Bioorg Chem ; 108: 104644, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486371

RESUMEN

Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.77 Å resolution crystal structure, followed by QM and classical calculations; this study allowed for the identification and characterization of the KRED1-Pglu reactive site. Once identified the recognition elements involved in the stereoselective desymmetrization of bulky 1,2-dicarbonyls mediated by KRED1-Pglu, a mechanism was proposed together with an in silico prediction of substrates reactivity.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aldehídos/metabolismo , Pichia/enzimología , Aldehídos/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
7.
Int J Biol Macromol ; 174: 175-184, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33516852

RESUMEN

Protein disulfide isomerase (PDI) is an important molecular chaperone capable of facilitating protein folding in addition to catalyzing the formation of a disulfide bond. To better understand the distinct substrate-screening principles of Pichia pastoris PDI (Protein disulfide isomerase) and the protective role of PDI in amyloidogenic diseases, we investigated the expression abundance and intracellular retention levels of three archetypal amyloidogenic disulfide bond-free proteins (Aß42, α-synuclein (α-Syn) and SAA1) in P. pastoris GS115 strain without and with the overexpression of PpPDI (P. pastoris PDI). Intriguingly, amyloidogenic Aß42 and α-Syn were detected only as intracellular proteins whereas amyloidogenic SAA1 was detected both as intracellular and extracellular proteins when these proteins were expressed in the PpPDI-overexpressing GS115 strain. The binding between PpPDI and each of the three amyloidogenic proteins was investigated by molecular docking and simulations. Three different patterns of PpPDI-substrate complexes were observed, suggesting that multiple modes of binding might exist for the binding between PpPDI and its amyloidogenic protein substrates, and this could represent different specificities and affinities of PpPDI toward its substrates. Further analysis of the proteomics data and functional annotations indicated that PpPDI could eliminate the need for misfolded proteins to be partitioned in ER-associated compartments.


Asunto(s)
Proteína Disulfuro Isomerasas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Cromatografía Liquida/métodos , Disulfuros/química , Retículo Endoplásmico/metabolismo , Expresión Génica/genética , Espectrometría de Masas/métodos , Chaperonas Moleculares/metabolismo , Simulación del Acoplamiento Molecular , Pichia/enzimología , Pichia/genética , Proteína Disulfuro Isomerasas/fisiología , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Saccharomycetales/enzimología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1679-1688, 2020 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-32924366

RESUMEN

Based on the rDNA sequence of Pichia pastoris, a multi-copy gene expression vector of transglutaminase (pPICZα-rDNA-mtg) was constructed and transformed to the host strain (pGAP9-pro/GS115) expressing pro peptide, to obtain the co-expression strain pro/rDNA-mtg (GS115). Real-time fluorescence quantitative PCR (qPCR) was used to analyze transglutaminase gene copy number in the 4 positive strains. We further studied the effect of gene copy on the enzyme production of recombinant Pichia pastoris as well as high-density fermentation of higher expression strain in a 3-L fermenter. The mtg copy numbers of the 4 positive strains were 2.21, 3.36, 5.72 and 7.62 (mtg-2c, mtg-3c, mtg-6c and mtg-8c), respectively, and the enzyme production capacity and protein expression level were mtg-3c>mtg-2c>mtg-6c>mtg-8c. Mtg-3c and mtg-6c of high-density fermentation had the highest enzymatic activity and enzymatic activity per unit wet weight in the supernatant of 3.12 U/mL, 52.1 U/g (wet weight) and 2.07 U/mL and 36.5 U/g (wet weight), respectively. In terms of enzyme activity per unit wet weight, mtg-3c is 1.4 times higher than that of mtg-6c. The activity of purified enzyme (mtg-3c) was up to 7.21 U/mL and the protein concentration was 437.2 µg/mL. By analyzing the effect of mtg copy number on the enzyme production of recombinant strains, mtg-3c is suitable for the co-expression of two genes (pro and mtg) in pro/rDNA-mtg, and its enzyme activity is related to higher protein secretion of the strain.


Asunto(s)
Dosificación de Gen , Pichia , Proteínas Recombinantes , Transglutaminasas , Fermentación , Microbiología Industrial , Pichia/enzimología , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1689-1698, 2020 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-32924367

RESUMEN

Enterokinase is a class of serine proteases that specifically recognize the cleavage DDDDK sequences. Therefore, enterokinase has been widely used as a tool enzyme in the field of biomedicine. Currently, the expression level of enterokinase in Pichia pastoris is low, which hinders related practical applications. In this study, the effects of six different signal peptides SP1, SP2, SP3, SP4, SP7 and SP8 on the secretory expression of enterokinase in Pichia pastoris were studied. Compared with α-factor, SP1 significantly increased the secretory expression of enterokinase (from 6.8 mg/L to 14.3 mg/L), and the enterokinase activity increased from (2 390±212) U/mL to (4 995±378) U/mL in shaking flask cultures. On this basis, the enterokinase activity was further enhanced to (7 219±489) U/mL by co-expressing the endogenous protein Kex2. Moreover, the activity that the mutant strain with N-terminal fusion of three amino acids of WLR was increased to (15 145±920) U/mL with a high specific activity of (1 174 600±53 100) U/mg. The efficient secretory expression of enterokinase laid a foundation for its applications in near future.


Asunto(s)
Enteropeptidasa , Regulación Fúngica de la Expresión Génica , Microbiología Industrial , Pichia , Aminoácidos , Enteropeptidasa/genética , Regulación Fúngica de la Expresión Génica/genética , Microbiología Industrial/métodos , Pichia/enzimología , Pichia/genética , Señales de Clasificación de Proteína
10.
Food Chem ; 332: 127426, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32619948

RESUMEN

A selected Pichia fermentans strain was simultaneously and sequentially inoculated in synthetic and real juice with S. cerevisiae strains of different antagonistic activities in a ratio 1:1 to observe the correlation between varietal odorants and glycosidase activities. Fermentations using pure S. cerevisiae strains were used for comparison. Yeast biomass and glycosidase activities were monitored, varietal odorants were detected using HS-SPME-GC/MS during fermentation. The final wine aroma attributes were analyzed by trained panelists. Results showed that co-inoculation with high antagonistic S. cerevisiae resulted in higher glycosidase activities than others. Pearson correlation analysis indicated that yeast biomass was positively related to glycosidase activities during fermentation. The increase in glycosidase activities was the main reason for the higher production of terpenes and C13-norisoprenoids, and for the lower C6 compound content, which lead to superior fruity and floral aromas in the final wine samples of the high antagonistic S. cerevisiae group.


Asunto(s)
Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Fermentación , Frutas/química , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Cromatografía de Gases y Espectrometría de Masas , Norisoprenoides/análisis , Norisoprenoides/metabolismo , Odorantes/análisis , Pichia/enzimología , Pichia/crecimiento & desarrollo , Terpenos/análisis , Terpenos/metabolismo
11.
Methods Mol Biol ; 2149: 45-56, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617928

RESUMEN

Capillary zone electrophoresis (CZE) has been rising in its importance in structural analysis of plant cell walls, characterization of enzymes that degrade polysaccharides, and profiling of oligosaccharides to characterize cell wall mutants. CZE with laser-induced fluorescence detection provides high separation efficiencies, high-speed analysis, with extremely small sample requirements. Here we describe the instrumentation we use and methods for attaching fluorescent labels to oligosaccharides so that they can be detected.


Asunto(s)
Electroforesis Capilar/métodos , Rayos Láser , Fluorescencia , Oligosacáridos/química , Pichia/enzimología , Poligalacturonasa/metabolismo , Pirenos/química , Especificidad por Sustrato , Factores de Tiempo
12.
Enzyme Microb Technol ; 137: 109533, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32423670

RESUMEN

Phytate is the major storage form of phosphorus in plants. It is present in cereals and raw materials of vegetable origin used in animal and human diets. However, non-ruminant animals have little phytase activity in their guts and, therefore, cannot digest phytate. As a result, almost all dietary phytate is discharged into the environment, causing phosphorus pollution. Phytate is also considered as an "antinutrient" for its ability to form insoluble and stable complexes with metal ions, thus reducing dietary absorption of essential minerals. It is a dire need to develop sustainable approaches for environmentally-friendly utilization for this valuable and abundant natural resource. To this end, we engineered Pichia pastoris to express and secrete phytase in a "made-to-order" fashion in response to external level of inorganic phosphate (Pi). Responsiveness to external Pi level was achieved by generating a Pi-responsive promoter library using directed evolution. The resultant yeast strains were proven to liberate Pi from wheat-based meal in a simulated in vitro digestion model. These yeast-based whole cell biocatalysts may serve as platform hosts with potential applications in food processing industry and animal waste treatment.


Asunto(s)
6-Fitasa/genética , Fosfatos/metabolismo , Ácido Fítico/metabolismo , Pichia/enzimología , Pichia/genética , 6-Fitasa/metabolismo , Digestión , Enzimas , Hidrólisis , Técnicas In Vitro , Ingeniería Metabólica , Regiones Promotoras Genéticas
13.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32471916

RESUMEN

The thermotolerant yeast Ogataea parapolymorpha (formerly Hansenula polymorpha) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O2 consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type O. parapolymorpha strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h-1, both O. parapolymorpha strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations.IMPORTANCE Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory Ogataea parapolymorpha under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of O. parapolymorpha at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Saccharomycetales/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Oxidación-Reducción , Pichia/enzimología , Pichia/metabolismo , Saccharomycetales/enzimología
14.
Bioengineered ; 11(1): 375-385, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32175802

RESUMEN

Rhizomucor miehei lipase (RML) is a biocatalyst that widely used in laboratory and industrial. Previously, RML with a 70-amino acid propeptide (pRML) was cloned and expressed in P. pastoris. Recombinant strains with (strain containing 4-copy prml) and without ER stress (strain containing 2-copy prml) were obtained. However, the effective expression of pRML in P. pastoris by coexpressing ER-related elements in pRML-produced strain with or without ER stress has not been reported to date. In this study, an efficient way to produce functional pRML was explored in P. pastoris. The coexpression of protein folding chaperones, including PDI and ERO1, in different strains with or without ER stress, was investigated. PDI overexpression only increased pRML production in 4-copy strain from 705 U/mL to 1430 U/mL because it alleviated the protein folded stress, increased the protein concentration from 0.56  mg/mL to 0.65 mg/mL, and improved enzyme-specific activity from 1238 U/mg to 2186 U/mg. However, PDI coexpression could not improve pRML production in the 2-copy strain because it increased protein folded stress, while ERO1 coexpression in the two strains all had a negative effect on pRML expression. We also investigated the effect of the propeptide on the substrate specificity and the condition for pRML enzyme powder preparation. Results showed that the relative activity exceeded 80% when the substrates C8-C10 were detected at 35°C and pH 6, and C8-C12 at 45°C and pH 8. The optimal enzyme powder preparation pH was 7, and the maximum recovery rate for pRML was 73.19%.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Lipasa/metabolismo , Pichia/enzimología , Rhizomucor/enzimología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Pliegue de Proteína
15.
Carbohydr Polym ; 236: 116059, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32172874

RESUMEN

A low-molecular-weight chitosan (LMWC) sample was prepared by enzymatic hydrolysis, and used for investigation of special Maillard reaction products (MRPs) and factors affecting LMWC bioactivities. After undergoing MR, LMWC turned to brown color (termed BLMWC), showed reduction of several indices of rice growth promotion. This alteration of bioactivities was attributable to MRPs in BLMWC. A special MRP, 5-hydroxy-2-pyridine methanol isomer (5-H-2PMIS), was identified by HPLC and LC-MS. Analysis of key factors affecting MR, using this MRP as monitoring target compound and OD420 value, suggested that MR process can be minimized by storing LMWC under vacuum in a dry, low-temperature, neutral-pH environment. Na2SO3 was effective for inhibition of MR, at optimal concentration 0.5 %. Chemical and FTIR analyses showed that Na2SO3-treated sample conformed to the Chinese National Standard of chitosan (GB 29941-2013). Control of MR is essential for application of LMWC in food, pharmaceutical, and other industries.


Asunto(s)
Quitosano/química , Productos Finales de Glicación Avanzada/química , Quitosano/farmacología , Productos Finales de Glicación Avanzada/farmacología , Glicósido Hidrolasas/química , Reacción de Maillard/efectos de los fármacos , Peso Molecular , Oryza/efectos de los fármacos , Pichia/enzimología , Sulfitos/química
16.
J Biosci Bioeng ; 130(1): 29-35, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32171656

RESUMEN

Saccharomyces cerevisiae can obtain xylose utilization capacity via integration of heterogeneous xylose reductase (XR) and xylitol dehydrogenase (XDH) genes into its metabolic pathway, and XYL2 which encodes the XDH plays an essential role in this process. Herein, we reported that two hypothetical XYL2 genes from the multistress-tolerant yeasts of Issatchenkia orientalis and Torulaspora delbrueckii were cloned, and they encoded two XDHs, IoXyl2p and TdXyl2p, respectively, with the activities for oxidation of xylitol to xylulose. Comparative studies demonstrated that IoXyl2p and TdXyl2p, like the SsXyl2p from Scheffersomyces stipitis, were probably localized to the cytoplasm and strictly dependent on NAD+ rather than NADP+ as the cofactor for catalyzing the oxidation reaction of xylitol. IoXyl2p had the highest specific activity, maximum velocity (Vmax), affinity to xylitol (Km), and catalytic efficiency (kcat/Km) among the three XDHs. The optimum temperature for oxidation of xylitol were at 45 °C by IoXyl2p and at 35 °C by TdXyl2p and SsXyl2p, and the optimum pH of IoXyl2p, TdXyl2p and SsXyl2p for oxidation of xylitol was 8.0, 8.5 and 7.5, respectively. Mg2+ promoted the activities of IoXyl2p and TdXyl2p, but slightly inhibited the activity of SsXyl2p. Most metal ions had much weaker inhibition effects on IoXyl2p and TdXyl2p than SsXyl2p. IoXyl2p displayed the strongest salt resistance among the three XDHs. To summarize, IoXyl2p from I. orientalis and TdXyl2p from T. delbrueckii characterized in this study are considered to be the attractive candidates for the construction of genetically engineered S. cerevisiae for efficiently fermentation of carbohydrate in lignocellulosic hydrolysate.


Asunto(s)
D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/enzimología , Torulaspora/enzimología , Clonación Molecular , D-Xilulosa Reductasa/química , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/química , Cinética , Pichia/genética , Pichia/metabolismo , Torulaspora/genética , Torulaspora/metabolismo , Xilitol/metabolismo , Xilosa/metabolismo
17.
Appl Microbiol Biotechnol ; 104(6): 2489-2500, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32020278

RESUMEN

1-Cyanocyclohexaneacetic acid (1-CHAA) is a critical intermediate for the synthesis of the antiepileptic agent gabapentin. Previously, our group has established a novel manufacturing route for 1-CHAA through bioconversion catalyzed by an Escherichia coli (E. coli) nitrilase whole cell catalyst. However, the nitrilase expressed in E. coli has several drawbacks such as a low level of reusability, which hampered its industrial application. Herein, we investigated the potential of using the methylotrophic yeast Pichia pastoris (P. pastoris) for producing the nitrilase whole cell catalyst. To achieve strains with high catalytic activities, we investigated the effects of the promoter choice, expressing cassette copy number, and co-expression of chaperone on the production of nitrilase. Our results demonstrated that the strain harboring the multicopy integrations of nitrilase gene under the control of the alcohol oxidase 1 (AOX1) promoter and co-expressing of ER oxidoreductin 1 (ERO1) exhibited an 18-fold enhancement in the nitrilase activity compared with the strain containing a single integration of nitrilase gene under the control of glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter. This optimized P. pastoris strain, compared with the E. coli nitrilase whole cell catalyst, shows greatly improved levels of reusability and thermostability while has a similar high-substrate tolerance.


Asunto(s)
Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Dosificación de Gen , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Pichia/genética , Ingeniería de Proteínas/métodos , Catálisis , Pichia/enzimología , Regiones Promotoras Genéticas
18.
Protein Expr Purif ; 166: 105503, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31550499

RESUMEN

The N-glycosylation process that occurs in the Pichia pastoris protein expression system can have a significant effect on the yield of heterologous glycoproteins secreted from the yeast. The basis of the effect of N-glycosylation on yield, however, has not been elucidated. In order to investigate the effect of N-glycosylation on heterologous protein production, site-directed mutation was performed on five potential N-glycosylation sites of the tetanus toxin fragment C (TetC). Unaltered TetC (wild-TetC) and eight mutants, in which different numbers and locations of N-glycosylation sites were altered, were expressed in P. pastoris GS115. The recombinant target proteins presented different levels of N-glycosylation. The wild Tet-C and 4 mutations sites of putative N-glycosylation (4Gly mutant: N280Q) had the highest level of secreted protein, while 1 mutation of putative N-glycosylation sites (1Gly mutant: N39/64/85/205Q) had the highest level of intracellular, non-secreted heterologous protein. Reducing the number of native N-glycosylation sites decreased the level of glycosylation, as well as the level of secretion. Introduction of a N-glycosylation site at position 320, however, also reduced the level of expression and secretion of recombinant protein. These results indicate that the number and location of N-glycosylation sites jointly have an effect on the expression and secretion of heterologous glycoproteins in P. pastoris.


Asunto(s)
Glicoproteínas/genética , Fragmentos de Péptidos/genética , Pichia/genética , Proteínas Recombinantes/genética , Toxina Tetánica/genética , Secuencia de Aminoácidos , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/genética , Glicoproteínas/química , Glicosilación , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Pichia/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Toxina Tetánica/química , Transfección
19.
Appl Microbiol Biotechnol ; 104(4): 1595-1607, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31879825

RESUMEN

Sugar beet pulp is an agricultural processing residue that is a rich source of the cell wall polysaccharide arabinan. Functional oligosaccharides, specifically feruloylated arabino-oligosaccharides (FAOs), can be isolated from sugar beet pulp through selective action by endo-arabinanase (glycoside hydrolase family 43). This study aimed to develop yeast (Pichia pastoris) as an efficient, eukaryotic platform to produce a thermophilic endo-1,5-α-L-arabinanase (TS-ABN) for extracting FAOs from sugar beet pulp. Recombinant TS-ABN was secreted into yeast culture medium at a yield of ~ 80 mg/L, and the protein exhibited specific enzyme activity, pH and temperature optimum, and thermostability comparable to those of the native enzyme. Treatment of sugar beet pulp with Pichia-secreted TS-ABN released FAOs recovered by hydrophobic chromatography at 1.52% (w/w). The isolated FAOs averaged seven arabinose residues per ferulic acid, and treatment of T84 human colon epithelial cells significantly increased expression of two key tight junction-related proteins-zonula occludens-1 and occludin-in a dose-dependent manner. This research establishes a biochemical platform for utilizing sugar beet pulp to produce value-added bioproducts with potential nutraceutical applications.


Asunto(s)
Beta vulgaris/química , Glicósido Hidrolasas/biosíntesis , Oligosacáridos/química , Pichia/enzimología , Temperatura , Línea Celular , Colon , Estabilidad de Enzimas , Células Epiteliales/efectos de los fármacos , Glicósido Hidrolasas/genética , Humanos , Concentración de Iones de Hidrógeno , Ocludina/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteína de la Zonula Occludens-1/genética
20.
Biotechnol Appl Biochem ; 67(5): 714-722, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31498481

RESUMEN

Oil palm empty fruit bunch (OPEFB) is a lignocellulosic biomass generated in palm oil mills. It is a sustainable resource for fuels and chemicals. In this study, OPEFB was converted to ethanol by an integrative OPEFB conversion process including dilute alkaline pretreatment, cellulolytic enzyme production, separate OPEFB hydrolysis, and cofermentation using a hybrid xylose-fermenting yeast. OPEFB was pretreated using 1% (w/v) NaOH solution followed by 1% (v/v) H2 O2 . Further, cellulolytic enzymes were produced by submerged fermentation using Trichoderma reesei Rut C30 and used for OPEFB hydrolysis. The filter paper cellulase activity of the crude cellulolytic enzymes was 15.1 IU/mL, which was higher than those obtained by reported Trichoderma strains under laboratory conditions. Glucose and xylose yields reached 66.9% and 74.2%, respectively, at 30 filter paper unit (FPU)/g-biomass enzyme dosage and 10% (w/v) biomass loading. The hybrid yeast strain ScF2 was previously constructed through recursive genome shuffling of Pichia stipitis and Saccharomyces cerevisiae and was used in OPEFB hydrolysate fermentation. About 16.9 g/L ethanol was produced with an ethanol yield of 0.34 g/g sugars, which was 67% of theoretical ethanol yield.


Asunto(s)
Etanol/metabolismo , Microbiología Industrial , Aceite de Palma/metabolismo , Levaduras/metabolismo , Biocatálisis , Biomasa , Celulasa/metabolismo , Fermentación , Frutas/metabolismo , Proteínas Fúngicas/metabolismo , Hidrólisis , Hypocreales/enzimología , Hypocreales/metabolismo , Lignina/metabolismo , Pichia/enzimología , Pichia/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Levaduras/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...