Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 132
1.
J Biol Inorg Chem ; 29(3): 315-330, 2024 Apr.
Article En | MEDLINE | ID: mdl-38722397

Eighteen novel Ti(IV) complexes stabilized by different chelating amino-bis(phenolato) (ONNO, ONON, ONOO) ligands and 2,6-dipicolinic acid as a second chelator were synthesized with isolated yields ranging from 79 to 93%. Complexes were characterized by 1H and 13C-NMR spectroscopy, as well as by HRMS and X-Ray diffraction analysis. The good to excellent aqueous stability of these Ti(IV) complexes can be modulated by the substitutions on the 2-position of the phenolato ligands. Most of the synthesized Ti(IV) complexes demonstrated potent inhibitory activity against Hela S3 and Hep G2 tumor cells. Among them, the naphthalenyl based Salan type 2j, 2-picolylamine based [ONON] type 2n and N-(2-hydroxyethyl) based [ONOO] type 2p demonstrated up to 40 folds enhanced cytotoxicity compared to cisplatin together with a significantly reduced activity against healthy AML12 cells. The three Ti(IV) complexes exhibited fast cellular uptake by Hela S3 cells and induced almost exclusively apoptosis. 2j could trigger higher level of ROS generation than 2p and 2n.


Antineoplastic Agents , Coordination Complexes , Drug Screening Assays, Antitumor , Picolinic Acids , Titanium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Structure-Activity Relationship , Titanium/chemistry , Titanium/pharmacology , HeLa Cells , Apoptosis/drug effects , Molecular Structure , Cell Proliferation/drug effects
2.
J Med Chem ; 65(3): 2593-2609, 2022 02 10.
Article En | MEDLINE | ID: mdl-35089713

Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/µmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.


Contrast Media/chemistry , Picolinic Acids/chemistry , Pyrans/chemistry , Radiopharmaceuticals/chemistry , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Contrast Media/chemical synthesis , Contrast Media/metabolism , Female , Ligands , Macaca fascicularis , Male , Picolinic Acids/chemical synthesis , Picolinic Acids/metabolism , Positron-Emission Tomography , Pyrans/chemical synthesis , Pyrans/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Rats, Sprague-Dawley
3.
Bioorg Chem ; 116: 105305, 2021 11.
Article En | MEDLINE | ID: mdl-34482166

Hu proteins are members of the RNA-binding protein (RBP) family and play a pivotal role in the regulation of post-transcriptional processes. Through interaction with selected mRNAs, RBPs regulate their function and stability; as a consequence, RBP dysregulation can cause abnormal translation of key proteins involved in several pathologies. In the past few years, this observation has sparked interest to develop new treatments against these pathologies by using small molecules able to modulate RBP activity. Among the four Hu proteins, we have directed our efforts towards the isoform HuR, which is mainly involved in cancer, inflammation and retinopathy. Aimed at developing compounds able to modulate the stability of HuR-mRNA complexes, in the present work, we applied a biophysical fragment screening by assessing a library of halogen-enriched heterocyclic fragments (HEFLibs) via Surface Plasmon Resonance (SPR) and Saturation Transfer Difference (STD) NMR to select promising fragments able to interact with HuR. One selected fragment and a few commercially available congeners were exploited to design and synthesize focused analogues of compound N-(3-chlorobenzyl)-N-(3,5-dihydroxyphenethyl)-4-hydroxybenzamide (1), our previously reported hit. STDNMR spectroscopy, molecular modeling, and SPR offered further insight into the HuR-small molecule interaction and showed that fragment-based approaches represent a promising and yet underexplored strategy to tackle such unusual targets. Lastly, fluorescence polarization (FP) studies revealed the capability of the new compounds to interfere with the formation of the HuR-mRNA complex. This is, to our knowledge, the first fragment-based campaign performed on the Hu protein class, and one of the few examples in the larger RBP field and constitutes an important step in the quest for the rational modulation of RBPs and related RNA functions by small molecules.


Picolinic Acids/chemistry , RNA-Binding Proteins/chemistry , Humans , Models, Molecular , Molecular Structure , Picolinic Acids/chemical synthesis , Surface Plasmon Resonance
4.
J Med Chem ; 64(16): 11904-11933, 2021 08 26.
Article En | MEDLINE | ID: mdl-34382802

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.


Antineoplastic Agents/therapeutic use , Monocarboxylic Acid Transporters/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Picolinic Acids/therapeutic use , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , HEK293 Cells , Humans , Lactic Acid/metabolism , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
5.
ChemMedChem ; 16(21): 3315-3325, 2021 11 05.
Article En | MEDLINE | ID: mdl-34342141

Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 µM and Ki =18.96±2.28 µM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.


Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Esters/pharmacology , Picolinic Acids/pharmacology , Animals , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Electrophorus , Esters/chemical synthesis , Esters/chemistry , Humans , Models, Molecular , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Rats , Structure-Activity Relationship
6.
Eur J Med Chem ; 223: 113576, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34153577

Using cheminformatics tools RDKit and literature investigation, four series of 24 thienopyrimidine/N-methylpicolinamide derivatives substituted with pyrimidine were designed, synthesized and evaluated for activities against three cancer cell lines (MDA-MB-231, HCT116 and A549), TAK1 kinase and NF-κB signaling pathway. Almost all compounds showed selectivity toward the A549 cell lines and the most promising compound 38 could inhibit TAK1 kinase and NF-κB signaling pathway with the IC50 values of 0.58 and 0.84 µM. Moreover, 38 can induce cell cycle arrest of A549 cells at the G2/M checkpoint with 30.57% and induce apoptosis (34.94%) in a concentration-dependent manner. And western blot showed that compound 38 could inhibit TNF-α-induced IκBα phosphorylation, IκBα degradation, p65 phosphorylation and TAK1 phosphorylation, and reduce the expression of p65. What's more, the studies of docking, molecular dynamics, MM/PBSA and frequency analysis theoretically supported the conclusions of the bioevaluation.


Antineoplastic Agents/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Picolinic Acids/pharmacology , Pyrimidines/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , MAP Kinase Kinase Kinases/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , NF-kappa B/metabolism , Picolinic Acids/chemical synthesis , Picolinic Acids/metabolism , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Thiophenes/chemical synthesis , Thiophenes/metabolism
7.
J Med Chem ; 64(8): 4677-4696, 2021 04 22.
Article En | MEDLINE | ID: mdl-33844524

Starting from lead compound 4, the 1,4-oxazine headgroup was optimized to improve potency and brain penetration. Focusing at the 6-position of the 5-amino-1,4-oxazine, the insertion of a Me and a CF3 group delivered an excellent pharmacological profile with a pKa of 7.1 and a very low P-gp efflux ratio enabling high central nervous system (CNS) penetration and exposure. Various synthetic routes to access BACE1 inhibitors bearing a 5-amino-6-methyl-6-(trifluoromethyl)-1,4-oxazine headgroup were investigated. Subsequent optimization of the P3 fragment provided the highly potent N-(3-((3R,6R)-5-amino-3,6-dimethyl-6-(trifluoromethyl)-3,6-dihydro-2H-1,4-oxazin-3-yl)-4-fluorophenyl)-5-cyano-3-methylpicolinamide 54 (NB-360), able to reduce significantly Aß levels in mice, rats, and dogs in acute and chronic treatment regimens.


Amyloid Precursor Protein Secretases/metabolism , Enzyme Inhibitors/chemical synthesis , Picolinic Acids/chemical synthesis , Thiazines/chemical synthesis , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Brain/metabolism , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Half-Life , Humans , Mice , Molecular Dynamics Simulation , Oxazines/chemistry , Picolinic Acids/pharmacokinetics , Picolinic Acids/therapeutic use , Rats , Structure-Activity Relationship , Thiazines/pharmacokinetics , Thiazines/therapeutic use
8.
Molecules ; 26(4)2021 Feb 21.
Article En | MEDLINE | ID: mdl-33670007

A novel series of 4-(4-formamidophenylamino)-N-methylpicolinamide derivatives were synthesized and evaluated against different tumor cell lines. Experiments in vitro showed that these derivatives could inhibit the proliferation of two kinds of human cancer cell lines (HepG2, HCT116) at low micromolar concentrations and the most potent analog 5q possessed broad-spectrum antiproliferative activity. Experiments in vivo demonstrated that 5q could effectively prolong the longevity of colon carcinoma-burdened mice and slow down the progression of cancer cells by suppression of angiogenesis and the induction of apoptosis and necrosis.


Antineoplastic Agents/pharmacology , Picolinic Acids/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Tumor Cells, Cultured
9.
J Med Chem ; 63(23): 14724-14739, 2020 12 10.
Article En | MEDLINE | ID: mdl-33205981

Aromatic aldehydes elicit their antisickling effects primarily by increasing the affinity of hemoglobin (Hb) for oxygen (O2). However, challenges related to weak potency and poor pharmacokinetic properties have hampered their development to treat sickle cell disease (SCD). Herein, we report our efforts to enhance the pharmacological profile of our previously reported compounds. These compounds showed enhanced effects on Hb modification, Hb-O2 affinity, and sickling inhibition, with sustained pharmacological effects in vitro. Importantly, some compounds exhibited unusually high antisickling activity despite moderate effects on the Hb-O2 affinity, which we attribute to an O2-independent antisickling activity, in addition to the O2-dependent activity. Structural studies are consistent with our hypothesis, which revealed the compounds interacting strongly with the polymer-stabilizing αF-helix could potentially weaken the polymer. In vivo studies with wild-type mice demonstrated significant pharmacologic effects. Our structure-based efforts have identified promising leads to be developed as novel therapeutic agents for SCD.


Antisickling Agents/pharmacology , Benzaldehydes/pharmacology , Isonicotinic Acids/pharmacology , Nicotinic Acids/pharmacology , Picolinic Acids/pharmacology , Animals , Antisickling Agents/chemical synthesis , Antisickling Agents/metabolism , Benzaldehydes/chemical synthesis , Benzaldehydes/metabolism , Crystallography, X-Ray , Hemoglobins/metabolism , Isonicotinic Acids/chemical synthesis , Isonicotinic Acids/metabolism , Mice, Inbred C57BL , Molecular Structure , Nicotinic Acids/chemical synthesis , Nicotinic Acids/metabolism , Oxygen/metabolism , Picolinic Acids/chemical synthesis , Picolinic Acids/metabolism , Protein Binding , Structure-Activity Relationship
10.
J Med Chem ; 63(17): 10045-10060, 2020 09 10.
Article En | MEDLINE | ID: mdl-32787144

The design and discovery of a new series of (5-alkynyl-3-hydroxypicolinoyl)glycine inhibitors of prolyl hydroxylase (PHD) are described. These compounds showed potent in vitro inhibitory activity toward PHD2 in a fluorescence polarization-based assay. Remarkably, oral administration of 17, with an IC50 of 64.2 nM toward PHD2, was found to stabilize HIF-α, elevate erythropoietin (EPO), and alleviate anemia in a cisplatin-induced anemia mouse model with an oral dose of 25 mg/kg. Rat and dog studies showed that 17 has good pharmacokinetic properties, with oral bioavailabilities of 55.7 and 54.0%, respectively, and shows excellent safety profiles even at a high dose of 200 mg/kg in these animals. Based on these results, 17 is currently being evaluated in a phase I clinical trial for anemia.


Anemia/drug therapy , Glycine/analogs & derivatives , Glycine/therapeutic use , Picolinic Acids/therapeutic use , Prolyl-Hydroxylase Inhibitors/therapeutic use , Anemia/chemically induced , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cisplatin , Dogs , Drug Design , Erythropoietin/metabolism , Female , Glycine/pharmacokinetics , Glycine/toxicity , Male , Mice, Inbred C57BL , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacokinetics , Picolinic Acids/toxicity , Prolyl-Hydroxylase Inhibitors/chemical synthesis , Prolyl-Hydroxylase Inhibitors/pharmacokinetics , Prolyl-Hydroxylase Inhibitors/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship
11.
Org Lett ; 22(17): 6879-6883, 2020 09 04.
Article En | MEDLINE | ID: mdl-32813530

A versatile method for the construction of C(sp2)-linked cyclophane peptide macrocycles via Pd-catalyzed picolinamide-directed intramolecular arylation of aryl and alkenyl C-H bonds of amino acid side chains with aryl iodides is developed. This method provides simple and efficient access to a variety of cyclophane-braced structures from readily accessible linear peptide precursors.


Amino Acids/chemistry , Palladium/chemistry , Picolinic Acids/chemistry , Picolinic Acids/chemical synthesis , Catalysis , Iodides/chemistry , Molecular Structure , Peptides/chemistry
12.
Bioorg Med Chem Lett ; 30(16): 127302, 2020 08 15.
Article En | MEDLINE | ID: mdl-32631522

Mitochondrial complex III is one of the most promising targets for a number of pharmaceuticals and fungicides. Due to the wide-spreaduse of complex III-inhibiting fungicides, a considerable increase of resistance has occurred worldwide. Therefore, inhibitors with novel scaffolds and potent activity against complex III are still in great demand. In this article, a new series of amide compounds bearing the diaryl ether scaffold were designed and prepared, followed by the biological evaluation. Gratifyingly, several compounds demonstrated potent activity against succinate-cytochrome c reductase (SCR, a mixture of mitochondrial complex II and complex III), with compound 3w possessing the best inhibitory activity (IC50 = 0.91 ± 0.09 µmol/L). Additional studies verified that 3w was a new inhibitor of complex III. Moreover, computational simulations elucidated that 3w should bind to the Qo site of complex III. We believe this work will be valuable for the preparation and discovery of more complex III inhibitors.


Electron Transport Complex III/antagonists & inhibitors , Molecular Dynamics Simulation , Picolinic Acids/pharmacology , Dose-Response Relationship, Drug , Electron Transport Complex III/deficiency , Electron Transport Complex III/metabolism , Humans , Mitochondrial Diseases , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Structure-Activity Relationship
13.
Molecules ; 25(9)2020 May 11.
Article En | MEDLINE | ID: mdl-32403238

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Quaternary Ammonium Compounds/chemistry , Animals , CHO Cells , Candida/drug effects , Cell Survival/drug effects , Cricetulus , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Herpesvirus 3, Human/drug effects , Microbial Sensitivity Tests , Picolinic Acids/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Structure-Activity Relationship , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
14.
J Am Chem Soc ; 142(11): 5266-5271, 2020 03 18.
Article En | MEDLINE | ID: mdl-32090542

Direct C-H functionalization of aromatic compounds is a powerful tool for organic synthesis; however, differentiation among the ubiquitous and often chemically similar C-H bonds remains a significant challenge. Conflation with coordinating or directing groups incorporated into the intended substrate has helped address these limitations, although access to remote sites remains limited. Herein, we report an operationally simple and sustainable direct meta-selective H2N amination of benzylic and related aromatic picolinates under conditions mild enough to modify polyfunctional and late-stage molecules.


Chlorides/chemistry , Ferric Compounds/chemistry , Picolinic Acids/chemistry , Amination , Aniline Compounds/chemical synthesis , Catalysis , Hydroxylamines/chemistry , Molecular Structure , Picolinic Acids/chemical synthesis
15.
Org Biomol Chem ; 18(5): 920-930, 2020 02 07.
Article En | MEDLINE | ID: mdl-31922164

By choosing pyridostatin (PDS) with high thermal stabilization towards mixed-type G-quadruplexes as the monomer in dimers, three novel polyether-tethered PDS dimers (1a-c) were first synthesized and their interaction with human telomere G-quadruplex dimers (G2T1) was studied. Through the regulation of the linker length in PDS dimers, the dimer with a medium-length polyether linker (1b) showed higher binding selectivity and thermal stabilization (ΔTm = 29.5 °C) towards antiparallel G2T1 over G-quadruplex monomers (G1). Furthermore, the dimer with the longest-length polyether linker (1c) showed higher binding selectivity and thermal stabilization towards mixed-type G2T1 over mixed-type G1, c-kit 1, c-kit 2, c-myc and ds DNA. This work provides new insights into the development of G2T1 binders, especially mixed-type G2T1 binders, which could be promoted by a polymer formed with a mixed-type G-quadruplex binder. In addition, dimer 1c exhibited stronger telomerase inhibition than dimers 1a and 1b.


Aminoquinolines/chemistry , Dimerization , G-Quadruplexes , Picolinic Acids/chemistry , Telomere/metabolism , Aminoquinolines/chemical synthesis , Calorimetry , Circular Dichroism , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Picolinic Acids/chemical synthesis , Telomerase/antagonists & inhibitors , Thermodynamics
16.
Eur J Med Chem ; 168: 315-329, 2019 Apr 15.
Article En | MEDLINE | ID: mdl-30826508

Two series of picolinamide derivatives bearing (thio)urea and dithiocarbamate moieties were designed and synthesized as VEGFR-2 kinase inhibitors. All the new compounds were screened for their cytotoxic activity against A549 cancer cell line and VEGFR-2 inhibitory activity. Compounds 7h, 9a and 9l showed potent inhibitory activity against VEGFR-2 kinase with IC50 values of 87, 27 and 94 nM, respectively in comparison to sorafenib (IC50 = 180 nM) as a reference. Compounds 7h, 9a and 9l were further screened for their antitumor activity against specific resistant human cancer cell lines from different origins (Panc-1, OVCAR-3, HT29 and 786-O cell lines) where compound 7h showed significant cell death in most of them. Multi-kinase inhibition assays were performed for the most potent VEGFR-2 inhibitors where compound 7h showed enhanced potency towards EGFR, HER-2, c-MET and MER kinases. Cell cycle analysis of A549 cells treated with 9a showed cell cycle arrest at G2/M phase and pro-apoptotic activity as indicated by annexin V-FITC staining.


Antineoplastic Agents/pharmacology , Drug Design , Molecular Docking Simulation , Picolinic Acids/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Bioorg Chem ; 86: 513-537, 2019 05.
Article En | MEDLINE | ID: mdl-30782571

Cancer is the second most important cause of death worldwide. There is always a demand for new anticancer drugs and continuously a wide variety of natural and synthetic compounds were developed by the researchers. Nowadays, a large number of drugs in clinical practice were found to have a high incidence of side effect and multidrug conflict. The development of novel less toxic, low cost and very energetic N-methylpicolinamide-bearing hybrids is a hot research topic in the community of medicinal chemistry. Herein we highlight the current advances in the synthesis of picolinamide-containing heterocyclic compounds as potent anticancer agents. In addition, briefly explore their structure-activity relationship studies for the inspiration of the innovation and development of more potent and effective drugs against various death-causing cancer diseases.


Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Picolinic Acids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Microwaves , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Structure-Activity Relationship
18.
Mol Pharm ; 16(3): 978-986, 2019 03 04.
Article En | MEDLINE | ID: mdl-30648870

Development of an effective and potent RNA delivery system remains a challenge for the clinical application of RNA therapeutics. Herein, we describe the development of an RNA delivery platform derived from self-assembled bicontinuous cubic lyotropic liquid crystalline phases, functionalized with zinc coordinated lipids. These metallo-cubosomes were prepared from a series of novel lipidic zinc(II)-bis(dipicolylamine) (Zn2BDPA)) complexes admixed with glycerol monooleate (GMO). The zinc metallo-cubosomes showed the high affinity to siRNA through interaction between Zn2BDPA and the phosphate groups of RNA molecules. Using a combination of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM), we demonstrated that a variety of Zn2BDPA lipid derivatives can be loaded into GMO cubosomes and the introduction of Zn2BDPA lipids effected an internal cubic phase transition of the resulting metallo-cubosomes. The findings of this study lay the foundations for the development of a new class of noncationic lipid-based encapsulation systems, metallo-cubosomes for RNA therapeutic delivery.


Drug Delivery Systems , Glycerides/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Picolinic Acids/chemistry , RNA, Small Interfering/chemistry , A549 Cells , Animals , CHO Cells , Cell Survival/drug effects , Cricetulus , Dynamic Light Scattering , Gene Silencing , Humans , Microscopy, Electron, Transmission , Organometallic Compounds/chemical synthesis , Phase Transition , Picolinic Acids/chemical synthesis , Protein Binding , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Scattering, Small Angle , X-Ray Diffraction
19.
Bioorg Med Chem ; 27(3): 483-491, 2019 02 01.
Article En | MEDLINE | ID: mdl-30611634

Metabotropic glutamate receptor 2 (mGluR2) has been suggested as a therapeutic target for treating schizophrenia-like symptoms arising from increased glutamate transmission in the human forebrain. However, no reliable positron emission tomography (PET) radiotracer allowing for in vivo visualization of mGluR2 in the human brain is currently available. In this study, we synthesized 4-(2-fluoro-4-[11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide ([11C]1) and evaluated its potential as a PET tracer for imaging mGluR2 in the rodent brain. Compound 1, a negative allosteric modulator (NAM) of mGluR2, showed high in vitro binding affinity (IC50: 26 nM) for mGluR2 overexpressed in human cells. [11C]1 was synthesized by O-[11C]methylation of the phenol precursor 2 with [11C]methyl iodide. After the reaction, HPLC purification and formulation, [11C]1 of 7.4 ±â€¯2.8 GBq (n = 8) was obtained from [11C]carbon dioxide of 22.5 ±â€¯4.8 GBq (n = 8) with >99% radiochemical purity and 70 ±â€¯32 GBq/µmol (n = 8) molar activity at the end of synthesis. In vitro autoradiography for rat brains showed that [11C]1 binding was heterogeneously distributed in the cerebral cortex, striatum, hippocampus, and cerebellum. This pattern is consistent with the regional distribution pattern of mGluR2 in the rodent brain. The radioactivity was significantly reduced by self- or MNI-137 (a mGluR2 NAM) blocking. Small-animal PET studies indicated a low in vivo specific binding of [11C]1 in the rat brain. The brain uptake was increased in a P-glycoprotein and breast cancer resistant protein double knockout mouse, when compared to a wild-type mouse. While [11C]1 presented limited potential as an in vivo PET tracer for mGluR2, we suggested that it can be used as a lead compound for developing new radiotracers with improved in vivo brain properties.


Brain/diagnostic imaging , Picolinic Acids/chemistry , Positron-Emission Tomography , Receptors, Metabotropic Glutamate/analysis , Animals , Brain/metabolism , Carbon Radioisotopes , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacokinetics , Radioactive Tracers , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution
20.
Bioorg Med Chem Lett ; 29(1): 47-50, 2019 01 01.
Article En | MEDLINE | ID: mdl-30446311

This letter describes the further chemical optimization of VU0424238 (auglurant), an mGlu5 NAM clinical candidate that failed in non-human primate (NHP) 28 day toxicology due to accumulation of a species-specific aldehyde oxidase (AO) metabolite of the pyrimidine head group. Here, we excised the pyrimidine moiety, identified the minimum pharmacophore, and then developed a new series of saturated ether head groups that ablated any AO contribution to metabolism. Putative back-up compounds in this novel series provided increased sp3 character, uniform CYP450-mediated metabolism across species, good functional potency and high CNS penetration. Key to the optimization was a combination of matrix and iterative libraries that allowed rapid surveillance of multiple domains of the allosteric ligand.


Drug Discovery , Picolinic Acids/pharmacology , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Rats , Receptor, Metabotropic Glutamate 5/metabolism , Structure-Activity Relationship
...