Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.781
1.
Food Res Int ; 187: 114452, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763687

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Antioxidants , Emulsions , Petroselinum , Phenols , Plant Extracts , Plant Leaves , Soybean Oil , Emulsions/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soybean Oil/chemistry , Phenols/chemistry , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Petroselinum/chemistry , Plant Leaves/chemistry , Oxidation-Reduction , Water/chemistry , Lipid Peroxidation/drug effects , Biphenyl Compounds/chemistry , Picrates/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
2.
Molecules ; 29(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38792132

In this study, different extraction methods and conditions were used for the extraction of antioxidants from brown macroalgae Fucus spiralis. The extraction methodologies used were ultrasound-assisted extraction (ultrasonic bath and ultrasonic probe), extraction with a vortex, extraction with an Ultra-Turrax® homogenizer, and high-pressure-assisted extraction. The extracts were analyzed for their total phenolic content (TPC) and their antioxidant activity, and evaluated through the 2,2-difenil-1-picrilhidrazil (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. Ultrasonic probe-assisted extraction yielded the highest values of TPC (94.78-474.16 mg gallic acid equivalents/g extract). Regarding the antioxidant activity, vortex-assisted extraction gave the best DPPH results (IC50 1.89-16 µg/mL), while the highest FRAP results were obtained using the Ultra-Turrax® homogenizer (502.16-1188.81 µmol ascorbic acid equivalents/g extract). For each extraction method, response surface methodology was used to analyze the influence of the experimental conditions "extraction time" (t), "biomass/solvent ratio" (R), "solvent" (S, water % in water/ethanol mixture), and "pressure" (P) on TPC, DPPH, and FRAP of the F. spiralis extracts. In general, higher TPC content and higher antioxidant capacity (lower IC50 and higher FRAP) were obtained with higher R, t, and P, and lower S (higher ethanol %). The model regarding the combined effects of independent variables t, R, and S on the FRAP response values for vortex-assisted extractions best fitted the experimental data (R2 0.957), with optimal extraction conditions of t = 300 s, R = 50 g, and S = 25%.


Antioxidants , Fucus , Fucus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Seaweed/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates/chemistry , Picrates/antagonists & inhibitors , Solvents/chemistry
3.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732526

Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.


Antioxidants , Glycoside Hydrolase Inhibitors , Insulin Resistance , Molecular Docking Simulation , Peptides , Glycoside Hydrolase Inhibitors/pharmacology , Hep G2 Cells , Humans , Antioxidants/pharmacology , Peptides/pharmacology , Peptides/chemistry , Edible Grain , alpha-Glucosidases/metabolism , Protein Hydrolysates/pharmacology , Reactive Oxygen Species/metabolism , Hypoglycemic Agents/pharmacology , Computer Simulation , Insulin , Sulfonic Acids , Biphenyl Compounds , Picrates , Benzothiazoles
4.
Pak J Pharm Sci ; 37(1): 147-154, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741411

Zeravschania khorasanica, a species endemic to the eastern part of Iran, possesses distinct characteristics that distinguish it from its two closely related species. This research employed five different extraction techniques to identify the active components, total phenolic content and in vitro antioxidant activity of the extract. Furthermore, hydro-distillation was utilized for GC/MS analysis to determine the composition of the essential oil. The total phenolic content was estimated using the Folin-Ciocalteu assay and the antioxidant capacity was evaluated using the DPPH radical scavenging test. The findings revealed that ethanolic Soxhlet extraction yielded the highest efficiency in extracting total phenolic content (88.19 ±1.99 gallic acid mg/100g). In contrast, water maceration extraction demonstrated the highest antioxidant activity (68.1 ±5.4%). Interestingly, the study uncovered that there is no significant positive correlation between the phenolic content and the antioxidant activity of the plant. Additionally, HPLC analysis identified three phenolic constituents in the extract. The Soxhlet extraction method yielded the highest levels of chlorogenic acid (5.8 ppm), caffeic acid (4.1 ppm) and salicylic acid (10.3 ppm). As per the GC/MS analysis, a total of eleven compounds were identified. The predominant compounds were elemicin at 58.19% and trans--bergamotene at 25.78%.


Antioxidants , Apiaceae , Gas Chromatography-Mass Spectrometry , Phenols , Plant Extracts , Solvents , Antioxidants/isolation & purification , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Iran , Solvents/chemistry , Apiaceae/chemistry , Chromatography, High Pressure Liquid , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Biphenyl Compounds/chemistry , Picrates/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/analysis
5.
Mar Drugs ; 22(4)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38667761

In order to explore the extraction and activity of macroalge glycolipids, six macroalgae (Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcata, Gracilariopsis lemaneiformis, Gracilaria sp. and Pyropia yezoensis) glycolipids were extracted with five different solvents firstly. Considering the yield and glycolipids concentration of extracts, Bangia fusco-purpurea, Gracilaria sp. and Pyropia yezoensis were selected from six species of marine macroalgae as the raw materials for the extraction of glycolipids. The effects of the volume score of methanol, solid-liquid ratio, extraction temperature, extraction time and ultrasonic power on the yield and glycolipids concentration of extracts of the above three macroalgae were analyzed through a series of single-factor experiments. By analyzing the antioxidant activity in vitro, moisture absorption and moisturizing activity, the extraction process of Bangia fusco-purpurea glycolipids was further optimized by response surface method to obtain suitable conditions for glycolipid extraction (solid-liquid ratio of 1:27 g/mL, extraction temperature of 48 °C, extraction time of 98 min and ultrasonic power of 450 W). Bangia fusco-purpurea extracts exhibited a certain scavenging effect on DPPH free radicals, as well as good moisture-absorption and moisture retaining activities. Two glycolipids were isolated from Bangia fusco-purpurea by liquid-liquid extraction, silica gel column chromatography and thin-layer chromatography, and they showed good scavenging activities against DPPH free radicals and total antioxidant capacity. Their scavenging activities against DPPH free radicals were about 60% at 1600 µg/mL, and total antioxidant capacity was better than that of Trolox. Among them, the moisturizing activity of a glycolipid was close to that of sorbierite and sodium alginate. These two glycolipids exhibited big application potential as food humectants and antioxidants.


Antioxidants , Glycolipids , Seaweed , Glycolipids/chemistry , Glycolipids/isolation & purification , Glycolipids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Seaweed/chemistry , Rhodophyta/chemistry , Solvents/chemistry , Picrates/chemistry
6.
Chem Biodivers ; 21(5): e202400228, 2024 May.
Article En | MEDLINE | ID: mdl-38613448

Marrubium vulgare L. (Lamiaceae) has a long history of use in traditional herbal medicine for the treatment of respiratory tract infections, inflammatory conditions, and pain. This study aimed to investigate the chemical composition, acute toxicity, and antinociceptive effects of the aqueous extract from M. vulgare leaves (AEMV). Antioxidant activity was evaluated using DPPH and reducing power assays. The chemical composition of AEMV was determined through LC-MS/MS, and the levels of total phenolics, flavonoids, and condensed tannins were quantified. Acute oral toxicity was assessed in male Swiss mice with a single oral dose of AEMV (1, 2, 5 g/kg). The analgesic impact was examined through writhing, hot plate, and formalin tests. Our findings not only confirmed the safety of the extract in animal models but also revealed significant antioxidant activity in AEMV. High-performance liquid chromatography (HPLC) analysis identified important bioactive compounds, with marrubiin being a major component. Furthermore, AEMV demonstrated robust antinociceptive properties in all conducted tests, highlighting its potential as a valuable natural source of bioactive compounds suitable for a wide range of therapeutic applications.


Analgesics , Antioxidants , Marrubium , Plant Extracts , Animals , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Male , Marrubium/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Leaves/chemistry , Pain/drug therapy , Pain/chemically induced , Biphenyl Compounds/antagonists & inhibitors , Water/chemistry , Chromatography, High Pressure Liquid , Picrates/antagonists & inhibitors , Dose-Response Relationship, Drug
7.
Bioorg Chem ; 147: 107363, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657527

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Antioxidants , Dipeptidyl Peptidase 4 , Hypoglycemic Agents , Pyrazoles , Triazoles , alpha-Amylases , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Dipeptidyl Peptidase 4/metabolism , Molecular Structure , Humans , Dose-Response Relationship, Drug , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Molecular Docking Simulation , Picrates/antagonists & inhibitors , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Benzopyrans , Nitriles
8.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675630

AHP-3a, a triple-helix acidic polysaccharide isolated from Alpinia officinarum Hance, was evaluated for its anticancer and antioxidant activities. The physicochemical properties and structure of AHP-3a were investigated through gel permeation chromatography, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The weight-average molecular weight of AHP-3a was 484 kDa, with the molar percentages of GalA, Gal, Ara, Xyl, Rha, Glc, GlcA, and Fuc being 35.4%, 21.4%, 16.9%, 11.8%, 8.9%, 3.1%, 2.0%, and 0.5%, respectively. Based on the results of the monosaccharide composition analysis, methylation analysis, and NMR spectroscopy, the main chain of AHP-3a was presumed to consist of (1→4)-α-D-GalpA and (1→2)-α-L-Rhap residues, which is a pectic polysaccharide with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) structural domains containing side chains. In addition, the results of the antioxidant activity assay revealed that the ability of AHP-3a to scavenge DPPH, ABTS, and OH free radicals increased with an increase in its concentration. Moreover, according to the results from the EdU, wound healing, and Transwell assays, AHP-3a can control the proliferation, migration, and invasion of HepG2 and Huh7 hepatocellular carcinoma cells without causing any damage to healthy cells. Thus, AHP-3a may be a natural antioxidant and anticancer component.


Alpinia , Antioxidants , Biphenyl Compounds , Polysaccharides , Alpinia/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hep G2 Cells , Molecular Weight , Cell Line, Tumor , Monosaccharides/analysis , Monosaccharides/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Picrates/chemistry , Picrates/antagonists & inhibitors , Spectroscopy, Fourier Transform Infrared
9.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675649

Artemisia vestita Wall. Ex Besser is a folklore medicinal plant that belongs to Asteraceae family and a treasure trove of drugs. The aim of this research study was to investigate the phytoconstituents, antimicrobial activity, antioxidant, anti-inflammatory, cytotoxicity and wound healing potential of A. vestita leaf extract (ALE). Phytochemical analysis of the ALE was carried out by Soxhlet extraction and GCMS (gas chromatography-mass spectrometry) analysis. Antimicrobial activity was performed by the agar well diffusion method against selected bacterial and fungal strains. Free radical scavenging potential was evaluated by DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (Ferric reducing antioxidant power) assays. Anti-inflammatory activity was performed by enzyme inhibition assay-COXII. The cytotoxicity of ALE on HaCaT cells was studied via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. An in vitro scratch assay was performed for the evaluation of the wound healing property of ALE. It showed satisfactory antimicrobial activity against Staphylococcus aureus (14.2 ± 0.28 mm), Escherichia coli (17.6 ± 0.52 mm), Bacillus subtilis (13.1 ± 0.37 mm), Streptococcus pyogenes (17.3 ± 0.64 mm), Proteus mirabilis (9.4 ± 0.56 mm), Aspergillus niger (12.7 ± 0.53 mm), Aspergilus flavus (15.3 ± 0.25 mm) and Candida albicans (17.6 ± 0.11 mm). In ALE, 36 phytochemicals were detected by GCMS analysis, but 22 were dominant. Moreover, the ALE was effective in scavenging free radicals with different assays and exhibited reasonable anti-inflammatory activity. The MTT assay revealed that ALE had a cytotoxic effect on the HaCaT cells. The scratch assay showed 94.6% wound closure (after 24 h incubation) compared to the positive control Cipladine, which is remarkable wound healing activity. This is the first report on the wound healing property of A. vestita, which can serve as a potential agent for wound healing and extends knowledge on its therapeutic potential.


Anti-Infective Agents , Antioxidants , Artemisia , Biphenyl Compounds , Microbial Sensitivity Tests , Phytochemicals , Picrates , Plant Extracts , Plant Leaves , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Wound Healing/drug effects , Candida albicans/drug effects , HaCaT Cells , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects
10.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558367

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Air Sacs , Fishes , Animals , Air Sacs/chemistry , Air Sacs/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Cyprinidae/metabolism , Fish Proteins/metabolism , Gelatin/chemistry , Hydrolysis , Osteogenesis/drug effects , Picrates , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , Subtilisins/metabolism , Fishes/metabolism
11.
Chem Biodivers ; 21(5): e202301667, 2024 May.
Article En | MEDLINE | ID: mdl-38502834

In this paper, a new tridentate Schiff base ligand (L) with nitrogen donor atoms and its cadmium(II) complexes with the general formula of CdLX2 (X=Cl-, Br-, I-, SCN-, N3 -, NO3 -) have been synthesized and characterized by physical and spectral (FT/IR, UV-Vis, Mass, and 1H, 13C NMR spectroscopies) methods. Also nano-structured cadmium chloride and bromide complexes were synthesized by sonochemical method and then used to prepare nanostructured cadmium oxide confirmed by XRD and SEM techniques. Thermal behavior of the compounds was studied in the temperature range of 25 to 900 °C under N2 atmosphere at a heating rate of 20 °C/ min. Moreover, thermo-kinetic activation parameters of thermal decomposition steps were calculated according to the Coats-Redfern relationship. Antimicrobial activities of the synthesized compounds against two gram-positive and two gram-negative bacteria such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and two fungi of Candida albicans and Aspergillus niger were investigated by well diffusion method. SEM technique was used to monitor the morphological changes of the bacteria treated with the compounds. The 2,2-Diphenyl-1-picrylhydrazyl(DPPH) and the ferric reducing antioxidant power (FRAP) methods were used to evaluate the antioxidant ability of the ligand and its cadmium(II) complexes. In final, the cytotoxicity properties of the ligand and some cadmium(II) complexes against PC3 cancer cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay and nitric oxide (NO) level measurement. The morphological changes of prostate cancer (PC3) cells due to treatment with the ligand and its complexes confirmed their anticancer effectiveness.


Antineoplastic Agents , Antioxidants , Cadmium , Coordination Complexes , Microbial Sensitivity Tests , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cadmium/chemistry , Cadmium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gram-Positive Bacteria/drug effects , Cell Survival/drug effects , Gram-Negative Bacteria/drug effects , Molecular Structure , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Candida albicans/drug effects , Cell Proliferation/drug effects , Fungi/drug effects , Structure-Activity Relationship , Picrates/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Temperature
12.
Chem Biodivers ; 21(5): e202302112, 2024 May.
Article En | MEDLINE | ID: mdl-38531073

The essential oils of Senecio plants have been used to treat a wide range of ailments. The current study aimed to extract the essential oil of Senecio glaucus obtained from Egypt's Nile delta and determine its chemical profile using GC-MS and NMR analysis. Then, the antimicrobial activity of the oil has been investigated against different fungal and bacterial strains. In addition, its activity as radical scavenger has been evaluated using DPPH, ABTS, and metal chelating techniques. The results revealed the identification of 50 compounds representing 98.80 % of the oil total mass. Sesquiterpenes, including dehydrofukinone (27.15 %) and 4,5-di-epi-aristolochene (10.27 %), as well as monoterpenes, including p-cymene (4.77 %), represented the most predominant constituents. The dehydrofukinone has been isolated and structurally confirmed using 1D and 2D NMR techniques. The oil has showed remarkable antifungal activity against Candida glabrata and C. albicans where the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were 3.13 µg/mL and 1.50 µg/mL and 12.50 µg/mL and 6.30 µg/mL, respectively that could be attributed to the sesquiterpene ketones present in the aerial tissues of the plant. Also, this oil inhibited the growth of the tested bacteria with MIC ranging from 12.50-100.00 µg/mL. In comparison to ascorbic acid and Trolox, the EO had remarkable scavenging activity of DPPH, ABTS and metal chelating with IC50 values of 313.17±13.4, 493.83±20.1, and 409.13±16.7 µg/mL. The docking studies of the identified compounds of the oil to different microbial targets, including Gyrase B and α-sterol demethylase, showed that the phytol possessed the best binding affinities toward the active sites of both enzymes with ΔG=-7.42 and -7.78 kcal/mol, respectively. In addition, the phytol revealed the highest binding affinity to tyrosine kinase Hck with ΔG=-7.44 kcal/mol.


Antioxidants , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Senecio , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Senecio/chemistry , Bacteria/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Fungi/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Picrates/antagonists & inhibitors , Odorants/analysis , Biphenyl Compounds/antagonists & inhibitors
13.
Chem Biodivers ; 21(5): e202400272, 2024 May.
Article En | MEDLINE | ID: mdl-38489001

Within a study focused on Sinapis pubescens subsp. pubescens wild from Sicily (Italy), an edible species still unexplored, our earlier published work has demonstrated good in vitro antioxidant properties for the flower and leaf hydroalcoholic extracts, exhibiting quite different qualitative-quantitative phenolic profiles. Herein, further research was designed to elucidate the role played by phenolic compounds in the different antioxidant mechanisms highlighted for the extracts. To achieve this goal, the crude extracts were subjected to liquid-liquid partitioning with solvents of increasing polarity; then, the fractions were investigated for their antioxidant properties using different in vitro assays. For both flowers and leaves, the ethyl acetate fractions exhibited the best activity in DPPH and reducing power assays, followed by n-butanol. The total phenolic content determination indicated these fractions as the phenolic-rich ones, which were characterized by HPLC-PDA/ESI-MS analysis. Conversely, the phenolic-rich fractions did not show any chelating activity, which was highlighted for the more hydrophobic ones.


Antioxidants , Biphenyl Compounds , Flowers , Phenols , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Flowers/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Brassicaceae/chemistry , Picrates/antagonists & inhibitors , Chromatography, High Pressure Liquid
14.
Chem Biodivers ; 21(5): e202301880, 2024 May.
Article En | MEDLINE | ID: mdl-38494456

This paper reports on some physicochemical and phytochemical characteristics (i. e. pH, electrical conductivity, colour, moisture content, total phenolic content, sugar profile) and in vitro antioxidant activity of honeys harvested from five legume species, red clover (Trifolium pratense), balansa clover (T. michelianum), Persian clover (T. resupinatum), purple clover (T. purpureum) and sanfoin, also known as holy clover (Onobrychis viciifolia), that were grown in enclosed shade houses to ensure that the honeys' characteristics are reflective of a truly monofloral honey. Glucose and fructose, determined via High-Performance Thin-Layer Chromatography (HPTLC) analysis, were found as the main sugars in all investigated honeys with the ratio of fructose to glucose ranging from 1 : 1.2 to 1 : 1.6. The honeys' pH values ranged from 3.9 to 4.6 which met Codes Alimentarius (CA) requirements. The moisture content was found to be between 17.6 and 22.2 % which in some cases was slightly higher than CA requirements (≤20 %). The honeys' colour values, prior and after filtration, were between 825.5-1149.5 mAU and 532.4-824.8 mAU respectively, illustrating golden yellow to deep yellow hues. The total phenolic content (TPC) of the honeys was determined using a modified Folin-Ciocalteu assay. Their antioxidant activity was captured by the Ferric Reducing-Antioxidant Power (FRAP) assay as well as HPTLC analysis coupled with 2,2-diphenyl-1-picrylhydrazyl (DPPH) derivatisation. The highest total phenolic content was found in red clover honey (45.4 mg GAE/100 g) whereas purple clover honey showed the highest level of activity in the FRAP assay (7.3 mmol Fe2+/kg). HPTLC-DPPH analysis of the honeys' organic extracts demonstrated the presence of various bioactive compounds that contribute to their overall antioxidant activity. This study developed a methodology for producing monofloral clover honeys in a space limited, enclosed production system, which allowed to collate important baseline data for these honeys that can serve as the foundation for their potential future development into commercial honeys, including honeys that can be used for medicinal purposes.


Antioxidants , Honey , Phytochemicals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Honey/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytochemicals/isolation & purification , Phenols/analysis , Phenols/chemistry , Hydrogen-Ion Concentration , Trifolium/chemistry , Picrates/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Chromatography, Thin Layer
15.
Comput Biol Chem ; 110: 108032, 2024 Jun.
Article En | MEDLINE | ID: mdl-38437779

Bioactive cobalt (II) macrocyclic complexes [Co(N4O4ML1)Cl2]-[Co(N4O4ML3)Cl2] have been synthesized by using the macrocyclic ligands [N4O4ML1], [N4O4ML2], and [N4O4ML3] that have an N4O4 core. These three macrocyclic ligands were all isolated in pure form, together with their complexes. Microanalytical investigations, FT-IR NMR, Mass, magnetic moments, electronic, PXRD, TGA, and EPR spectrum studies were used to analyse their structures. For these complexes, an octahedral geometry is proposed for the metal ion. By using molecular weights and conductivity measurements the monomeric and non-electrolytic nature has been confirmed. The Coats-Redfern and FWO methods are used to determine the thermodynamic characteristics of the ligands and their Co(II) complexes. The molecular modelling using the DFT technique displays the bond angle, bond lengths and quantum chemical properties. To determine their ability to prevent the growth of harmful fungus and bacteria, the ligands [N4O4ML1]- [N4O4ML3] and their complexes were tested in vitro against A. Niger, C. albicans and B. subtilis, S. aureus, E. coli and S. typhi fungal and bacterial organisms, respectively. By using DPPH free radical scavenger assays, the in vitro antioxidant capabilities of each compound were evaluated. The [Co(N4O4ML3)Cl2] antioxidative capabilities revealed significant radical scavenging power. The MTT assay was used to assess the toxicity of all the synthesised compounds under inquiry on MCF-7, HeLa, and A549 cancer cells. The findings revealed that the ligand and the compounds gave outstanding IC50 values in the range of 9.07-36.25 (uM) at a concentration of 25 ppm. Among all the substances evaluated, [Co(N4O4ML3)Cl2] complex was discovered to be the most active and least cytotoxic. Additionally, docking investigations of the produced compounds were carried out in order to validate the biological outcomes.


Antioxidants , Cobalt , Coordination Complexes , Density Functional Theory , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Cobalt/chemistry , Cobalt/pharmacology , Ligands , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Molecular Structure , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Picrates/antagonists & inhibitors , Picrates/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Cell Proliferation/drug effects , Bacteria/drug effects , Fungi/drug effects , Cell Line, Tumor
16.
Environ Geochem Health ; 46(3): 102, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38433158

Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.


Benzothiazoles , Hydrogen Peroxide , Peroxidase , Picrates , Sulfonic Acids , Animals , Humans , Molecular Docking Simulation , Peroxidases , Coloring Agents
17.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Article En | MEDLINE | ID: mdl-38329156

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Antioxidants , Biphenyl Compounds , Bees , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Animals , Biphenyl Compounds/antagonists & inhibitors , Gas Chromatography-Mass Spectrometry , Picrates/antagonists & inhibitors , Tandem Mass Spectrometry , Chromatography, Liquid , Solid Phase Microextraction
18.
J Sep Sci ; 47(4): e2300770, 2024 Feb.
Article En | MEDLINE | ID: mdl-38403448

German chamomile is one of the most effective herbal elements used in anti-allergic products and as an antioxidant. Herein, the antioxidant activity of different extract fractions of German chamomile was initially evaluated using an off-line 2,2-diphenyl-1-picrylhydrazyl spectrophotometric assay. The ethyl acetate extract demonstrated the highest efficacy in scavenging free radicals. Based on this, a rapid screening and separation method using ultra-high-performance liquid chromatography combined with the 2,2-diphenyl-1-picrylhydrazyl assay was implemented to identify antioxidants in the ethyl acetate fraction of German chamomile flowers. Ten potential radical scavengers were tentatively screened from German chamomile using a target-guided isolating approach with off-line two-dimensional high-speed countercurrent chromatography and the structures of the compounds were analyzed and identified. Ultimately, 10 radical scavengers were obtained from the ethyl acetate extract with a purity quotient exceeding 90%. The results demonstrated the effectiveness and reproducibility of this method for isolating potential antioxidants from complex mixtures in a targeted manner. This strategy can be applied to the target-guided isolation of complex mixtures of natural products with broad K-values and similar structures.


Acetates , Biphenyl Compounds , Countercurrent Distribution , Matricaria , Picrates , Countercurrent Distribution/methods , Plant Extracts/chemistry , Antioxidants/analysis , Liquid Chromatography-Mass Spectrometry , Reproducibility of Results , Complex Mixtures , Chromatography, High Pressure Liquid/methods
19.
Arch Pharm (Weinheim) ; 357(5): e2300725, 2024 May.
Article En | MEDLINE | ID: mdl-38346258

Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.


Anti-Bacterial Agents , Antineoplastic Agents , Antioxidants , Hydrazones , Microbial Sensitivity Tests , Humans , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , HCT116 Cells , Molecular Structure , Cell Survival/drug effects , Picrates/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Dose-Response Relationship, Drug
20.
Chem Biodivers ; 21(5): e202301739, 2024 May.
Article En | MEDLINE | ID: mdl-38243670

Newly, green metallic-nanoparticles (NPs) have received scientists' interest due to their wide variable medicinal applications owned to their economical synthesis and biologically compatible nature. In this study, we used rosmarinic acid (RosA) to prepare Cu0.5Zn0.5FeO4 NPs and later encapsulated them using PEG polymer. Characterization of NPs was done using the XRD method and SEM imaging. Further, we explored the encapsulated NPs for anti-inflammatory properties by downregulating the expression of pro-inflammatory cytokines mRNA in LPS-stimulated Raw 264.7 cells. Besides, employing DPPH, NO and ABTS radical scavenging assays to examine the antioxidant activity of the synthesized Cu0.5Zn0.5FeO4 NPs. Cu0.5Zn0.5FeO4 NPs revealed moderate antioxidant activity by scavenging DPPH and nitric oxide. We demonstrated that the NPs showed high potential anti-inflammatory activity by suppressing the mRNA and protein levels of pro-inflammatory cytokines in a dose-dependent manner, in LPS-induced Raw 264.7 cells. To our best knowledge, this is the first report where RosA was found to be a suitable phyto source for the green synthesis of Cu0.5Zn0.5FeO4 NPs and their in vitro anti-inflammatory and antioxidant effects. Taken together, our findings suggest that the RosA is a green resource for the eco-friendly synthesis of Cu0.5Zn0.5FeO4/PEG NPs, which further can be employed as a novel anti-inflammatory therapeutic agent.


Anti-Inflammatory Agents , Antioxidants , Cinnamates , Copper , Depsides , Lipopolysaccharides , Metal Nanoparticles , Rosmarinic Acid , Mice , Animals , Depsides/pharmacology , Depsides/chemistry , RAW 264.7 Cells , Cinnamates/chemistry , Cinnamates/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Copper/chemistry , Copper/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Metal Nanoparticles/chemistry , Zinc/chemistry , Zinc/pharmacology , Picrates/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Cell Survival/drug effects , Cytokines/metabolism , Sulfonic Acids/antagonists & inhibitors , Sulfonic Acids/chemistry , Dose-Response Relationship, Drug
...