Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Exp Bot ; 75(13): 3973-3992, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38572950

RESUMEN

The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.


Asunto(s)
Aclimatación , Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Picea , Pinus sylvestris , Estaciones del Año , Complejo de Proteína del Fotosistema I/metabolismo , Picea/fisiología , Picea/metabolismo , Pinus sylvestris/fisiología , Pinus sylvestris/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/fisiología
2.
New Phytol ; 242(6): 2440-2452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549455

RESUMEN

Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.


Asunto(s)
Sequías , Metano , Fotosíntesis , Pinus sylvestris , Brotes de la Planta , Pinus sylvestris/fisiología , Pinus sylvestris/metabolismo , Metano/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Aerobiosis , Temperatura , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Biomasa
3.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526975

RESUMEN

The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory toward mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggest that this is an important factor explaining the increasing mortality of Scots pines.


Asunto(s)
Pinus sylvestris , Hojas de la Planta , Raíces de Plantas , Árboles , Pinus sylvestris/metabolismo , Raíces de Plantas/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Metaboloma
4.
Plant Cell Environ ; 46(9): 2649-2666, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312624

RESUMEN

Carbon isotope composition of tree-ring (δ13 CRing ) is a commonly used proxy for environmental change and ecophysiology. δ13 CRing reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates (δ13 CP ), such as sucrose. However, δ13 CRing is not merely a record of δ13 CP . Isotope fractionation processes, which are not yet fully understood, modify δ13 CP during sucrose transport. We traced, how the environmental intra-seasonal δ13 CP signal changes from leaves to phloem, tree-ring and roots, for 7 year old Pinus sylvestris, using δ13 C analysis of individual carbohydrates, δ13 CRing laser ablation, leaf gas exchange and enzyme activity measurements. The intra-seasonal δ13 CP dynamics was clearly reflected by δ13 CRing , suggesting negligible impact of reserve use on δ13 CRing . However, δ13 CP became increasingly 13 C-enriched during down-stem transport, probably due to post-photosynthetic fractionations such as sink organ catabolism. In contrast, δ13 C of water-soluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as δ13 CP , but recorded intra-seasonal δ13 CP variability. The impact of environmental signals on δ13 CRing , and the 0.5 and 1.7‰ depletion in photosynthates compared ring organic matter and tree-ring cellulose, respectively, are useful pieces of information for studies exploiting δ13 CRing .


Asunto(s)
Terapia por Láser , Pinus sylvestris , Pinus , Árboles/metabolismo , Pinus sylvestris/metabolismo , Estaciones del Año , Isótopos de Carbono/análisis , Carbohidratos/análisis , Hojas de la Planta/metabolismo , Sacarosa/metabolismo , Pinus/metabolismo
5.
Nat Commun ; 14(1): 3210, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270605

RESUMEN

Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.


Asunto(s)
Pinus sylvestris , Tracheophyta , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Tracheophyta/metabolismo , Fotosíntesis , Transporte de Electrón , Pinus sylvestris/metabolismo , Oxígeno/metabolismo
6.
Plant Physiol Biochem ; 200: 107761, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209454

RESUMEN

Forest trees are subjected to multiple stressors during their long lifetime and therefore require effective and finely regulated stress-protective systems. Stressors can induce protective systems either directly or with the involvement of stress memory mechanisms. Stress memory has only begun to be uncovered in model plants and is unexplored in coniferous species. Therefore, we studied the possible role of stress memory in the regulation of the accumulation of stress-protective compounds (heat shock proteins, dehydrins, proline) in the needles of naturally grown Scots pine and Norway spruce trees subjected to the subsequent action of long-term (multiyear) and short-term (seasonal) water shortages. Although the water deficit was relatively mild, it significantly influenced the pattern of expression of stress memory-related heat shock factor (HSF) and SWI/SNF genes, indicating the formation of stress memory in both species. In spruce, dehydrin accumulation was increased by water shortage in a manner compatible with Type II stress memory. The accumulation of HSP40 in spruce needles was positively influenced by long-term water shortage, but this increase was unlikely to be of biological importance due to the concomitant decrease in HSP70, HSP90 and HSP101 accumulation. Finally, proline accumulation was negatively influenced by short-term water deficit in spruce. In pine, no one protective compound accumulated in response to water stress. Taken together, the results indicate that the accumulation of stress-protective compounds was generally independent of stress memory effects both in pine and in spruce.


Asunto(s)
Picea , Pinus sylvestris , Pinus , Sequías , Picea/metabolismo , Plantones/metabolismo , Pinus sylvestris/metabolismo
7.
Cells ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497074

RESUMEN

Manganese deficiency is a serious plant nutritional disorder, resulting in the loss of crop productivity in many parts of the world. Despite the progress made in the study of angiosperms, the demand for Mn in gymnosperms and the physiological responses to Mn deficiency remain unexplored. We studied the influence of Mn deficiency for 24 weeks on Pinus sylvestris L. seedling growth, ion homeostasis, pigment contents, lipid peroxidation, chlorophyll fluorescence indices and the transcript levels of photosynthetic genes and genes involved in chlorophyll biosynthesis. It was shown that Mn-deficient plants demonstrated suppressed growth when the Mn content in the needles decreased below 0.34 µmol/g DW. The contents of photosynthetic pigments decreased when the Mn content in the needles reached 0.10 µmol/g DW. Mn deficiency per se did not lead to a decrease in the nutrient content in the organs of seedlings. Photoinhibition of PSII was observed in Mn-deficient plants, although this was not accompanied by the development of oxidative stress. Mn-deficient plants had an increased transcript abundance of genes (psbO, psbP, psbQ, psbA and psbC), encoding proteins directly associated with the Mn cluster also as other proteins involved in photosynthesis, whose activities do not depend on Mn directly. Furthermore, the transcript levels of the genes encoding the large subunit of Rubisco, light-dependent NADPH-protochlorophyllide oxidoreductase and subunits of light-independent protochlorophyllide reductase were also increased in Mn-deficient plants.


Asunto(s)
Pinus sylvestris , Plantones , Plantones/metabolismo , Manganeso/metabolismo , Fotosíntesis/genética , Pinus sylvestris/genética , Pinus sylvestris/metabolismo , Plantas
8.
Proc Biol Sci ; 289(1982): 20220963, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36069014

RESUMEN

Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.


Asunto(s)
Ozono , Pinus sylvestris , Compuestos Orgánicos Volátiles , Gorgojos , Animales , Comunicación , Herbivoria , Pinus sylvestris/metabolismo , Plantas
9.
Protein Pept Lett ; 29(8): 711-720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35430966

RESUMEN

INTRODUCTION: A comprehensive study of enzymes of the antioxidant system (AOS) and phenolic metabolism is an actual subject of biochemical research; changes in the activity of these enzymes can be used as a diagnostic sign. At the same time, practically little attention has been paid to describing the regularities of these enzymatic reactions. The article presents the chemical kinetics study of reactions catalyzed by superoxide dismutase, catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase in Scots pine trunk tissues (Pinus sylvestris L.). The dependence of the enzyme reaction rate on the enzyme concentration and the substrate concentration is presented, and the pH-optimum for each reaction is established. BACKGROUND: Determination of AOS enzyme activity and PAL activity in woody plants has many difficulties. The chemical composition of pine trunk tissues affects determining AOS enzyme activity and PAL activity. Spectrophotometric determination of AOS enzyme activity and PAL activity gives perfect results when considering all additional controls by taking into account minor characteristics. OBJECTIVE: This study aimed at determining the AOS enzyme activity in 40-year-old Scots pine (Pinus sylvestris L.) plants growing in the Karelian (Russia) forest seed plantation. METHODS: Plant tissues were ground in liquid nitrogen to a uniform mass and homogenized at 4 °C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM DTT, 5 mM MgCl2, and 0.5 mM PMSF. After 15-min of extraction, the homogenate was centrifuged at 12000 g for 10 min (MPW-351R centrifuge, Poland). The supernatant was purified on 20 cm3 columns with Sephadex G-250. Aliquots with the highest protein amount were collected. In tissues, the protein concentration was 10-50 µg/ml. Proteins in the extracts were quantified by a Bradford assay. The enzyme activity was determined spectrophotometrically on a SpectroStar Nano plate spectrophotometer (BMG Labtech, Germany). RESULTS: Our study made it possible to modify the methods for determining the activity of superoxide dismutase, catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase in Scots pine trunk tissues. The enzymatic reaction rate dependence on the enzyme concentration and the substrate concentration was determined, and pH-optimum was also noted. This methodological article also provides formulas for calculating the activities of the enzymes. CONCLUSION: We found that determining AOS enzyme activity and PAL activity in woody plants is challenging. The chemical composition of the xylem and phloem of pine affects determining AOS enzyme activity and PAL activity. Spectrophotometric determination of AOS enzyme activity and PAL activity gives perfect results when considering all additional controls by taking into account minor characteristics.


Asunto(s)
Pinus sylvestris , Pinus , Pinus sylvestris/metabolismo , Antioxidantes , Catalasa , Fenilanina Amoníaco-Liasa/metabolismo , Madera/metabolismo , Pinus/metabolismo , Fenoles , Superóxido Dismutasa , Peroxidasas , Catecol Oxidasa
10.
Structure ; 30(5): 753-762.e5, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334207

RESUMEN

Plant defensins demonstrate high structural stability at extreme temperatures and pH values and, in general, are non-toxic to mammalian cells. These properties make them attractive candidates for use in biotechnology and biomedicine. Knowing the structure-function relationship is desirable to guide the design of plant defensin-based applications. Thus far, the broad range of biological activities was described only for one defensin from gymnosperms, the defensin PsDef1 from Scots pine. Here, we report that closely related defensin from the same taxonomy group, PsDef2, differing from PsDef1 by six amino acids, also possesses antimicrobial, antibacterial, and insect α-amylase inhibitory activities. We also report the solution structure and dynamics properties of PsDef2 assessed using a combination of experimental nuclear magnetic resonance (NMR) techniques. Lastly, we perform a comparative analysis of PsDef2 and PsDef1 gaining a molecular-level insight into their structure-dynamics-function relationship.


Asunto(s)
Pinus sylvestris , Animales , Antibacterianos/metabolismo , Defensinas/química , Mamíferos/metabolismo , Pinus sylvestris/metabolismo , Proteínas de Plantas/química
11.
Dokl Biol Sci ; 507(1): 364-372, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36781532

RESUMEN

The effects of Cu, Ni, and Cd on the Pinus sylvestris metabolome was studied in experimental conditions by gas chromatography-mass spectrometry (GC-MS). Structural changes in plant metabolite network became detectable on day 6 of exposure to the metals, 3-6 days earlier than visual signs of toxicity developed. Differences at the metabolome level arose earlier in a control group of plants, and specific effects of particular metals on the plant metabolome became distinct on day 9. Both nature and concentration of a metal equally contributed to the plant metabolome clustering. Plant responses (changes in concentrations of individual metabolites) to metal exposure substantially differed depending on the metal concentration (1 or 5 mM) and nature. The effects of Cd and Cu were generally similar, while the effect of Ni was often different. Dynamic changes visualized in plant metabolite matrix reflected the changes in its correlation structure, rather than depending on the set of particular compounds.


Asunto(s)
Metales Pesados , Pinaceae , Pinus sylvestris , Contaminantes del Suelo , Pinus sylvestris/metabolismo , Cadmio/farmacología , Pinaceae/metabolismo , Metales Pesados/toxicidad , Metales Pesados/análisis , Metaboloma , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
12.
Cells ; 10(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070116

RESUMEN

Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermidine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated that H+ ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.


Asunto(s)
Pinus sylvestris/metabolismo , Enfermedades de las Plantas , Poliaminas/metabolismo , Deficiencia de Potasio/metabolismo , Potasio/metabolismo , Plantones/metabolismo , Estrés Fisiológico , Células Cultivadas , Conductividad Eléctrica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Pinus sylvestris/embriología , Pinus sylvestris/genética , Deficiencia de Potasio/genética , Plantones/embriología , Plantones/genética
13.
Plant Cell Environ ; 44(8): 2744-2764, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33822379

RESUMEN

The widespread ascomycetous fungus Diplodia pinea is a latent, necrotrophic pathogen in Pinus species causing severe damages and world-wide economic losses. However, the interactions between pine hosts and virulent D. pinea are largely not understood. In the present study, systemic defence responses were investigated in non-inoculated, asymptomatic needles and roots of D. pinea infected saplings of two P. sylvestris provenances under controlled greenhouse conditions. Here, we show that D. pinea infection induced a multitude of systemic responses of the phytohormone profiles and metabolic traits. Shared systemic responses of both pine provenances in needles and roots included increased abscisic acid and jasmonic acid levels. Exclusively in the roots of both provenances, enhanced salicylic acid and reduced indole-3-acetic acid levels, structural biomass, and elevated activities of anti-oxidative enzymes were observed. Despite these similarities, the two pine provenances investigated different significantly in the systemic responses of both, phytohormone profiles and metabolic traits in needles and roots. However, the different systemic responses did not prevent subsequent destruction of non-inoculated needles, but rather prevented damage to the roots. Our results provide a detailed view on systemic defence mechanisms of pine hosts that are of particular significance for the selection of provenances with improved defence capacity.


Asunto(s)
Ascomicetos/patogenicidad , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Celulosa/metabolismo , Ciclopentanos/metabolismo , Interacciones Huésped-Patógeno/fisiología , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Nitrógeno/metabolismo , Oxilipinas/metabolismo , Pigmentos Biológicos/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Secundario
14.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546141

RESUMEN

Comparative transcriptome analysis provides a useful tool for the exploration of plant-pathogen interaction by allowing in-depth comparison of gene expression between unaffected, inoculated and wounded organisms. Here we present the results of comparative transcriptome analysis in genetically identical one-year-old Scots pine ramets after wounding and inoculation with Heterobasidion annosum. We identified 230 genes that were more than 2-fold upregulated in inoculated samples (compared to controls) and 116 downregulated genes. Comparison of inoculated samp les with wounded samples identified 32 differentially expressed genes (30 were upregulated after inoculation). Several of the genes upregulated after inoculation are involved in protection from oxidative stress, while genes involved in photosynthesis, water transport and drought stress tolerance were downregulated. An NRT3 family protein was the most upregulated transcript in response to both inoculation and wounding, while a U-box domain-containing protein gene was the most upregulated gene comparing inoculation to wounding. The observed transcriptome dynamics suggest involvement of auxin, ethylene, jasmonate, gibberellin and reactive oxygen species pathways and cell wall modification regulation in response to H. annosum infection. The results are compared to methyl jasmonate induced transcriptome dynamics.


Asunto(s)
Basidiomycota , Interacciones Huésped-Patógeno , Micosis/genética , Pinus sylvestris/genética , Enfermedades de las Plantas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Micosis/metabolismo , Micosis/microbiología , Estrés Oxidativo , Fotosíntesis , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Estrés Fisiológico
15.
Nat Commun ; 11(1): 6388, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319777

RESUMEN

Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection.


Asunto(s)
Transferencia de Energía , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pinus sylvestris/metabolismo , Aclimatación , Clorofila , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Fluorescencia , Cinética , Luz , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Estaciones del Año , Temperatura , Tilacoides/metabolismo , Factores de Tiempo , Árboles/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958662

RESUMEN

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Asunto(s)
Carbono/metabolismo , Pinus sylvestris/metabolismo , Suelo/química , Árboles/metabolismo , Carbono/análisis , Cambio Climático , Sequías , Ecosistema , Bosques , Pinus sylvestris/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Árboles/crecimiento & desarrollo , Agua/análisis , Agua/metabolismo
17.
PLoS One ; 15(9): e0238448, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986744

RESUMEN

Exposure to lead (Pb) can have serious toxic effects on the physiological and biochemical processes of plants. The chemical form of the metal determines the degree of its toxicity. In our research, we examined the effect of lead in the form of lead nitrate [Pb(NO3)2] and lead chloride (PbCl2) in concentrations of 12.5 mM and 25 mM on pine (Pinus sylvestris) seed germination. Nitrogen salt causes more severe changes than chloride salt. Increasing levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide were detected during germination processes. The high levels of ROS lead to redox changes in the cell. We observed a reduction in the level of the reduced form of glutathione (GSH), and at the same time observed increased levels of the oxidised form of glutathione (GSSG) depending on the concentration and also the time of exposure to lead compounds. At the beginning of germination processes, the effective non-enzymatic activity of the antioxidant cycle was dominant, and at the late stage the enzymatic activity was noticed in the presence of Pb compounds. CAT activity significantly increased after Pb compound exposition.


Asunto(s)
Pinus sylvestris/metabolismo , Semillas/metabolismo , Antioxidantes/metabolismo , Germinación/efectos de los fármacos , Glutatión/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/farmacología , Plomo/toxicidad , Malondialdehído/análisis , Malondialdehído/farmacología , Nitratos/toxicidad , Oxidación-Reducción , Pinus sylvestris/fisiología , Especies Reactivas de Oxígeno , Semillas/fisiología , Cloruro de Sodio
18.
Plant Cell Environ ; 43(7): 1751-1765, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335919

RESUMEN

Tree stems are an overlooked source of volatile organic compounds (VOCs). Their contribution to ecosystem processes and total VOC fluxes is not well studied, and assessing it requires better understanding of stem emission dynamics and their driving processes. To gain more mechanistic insight into stem emission patterns, we measured monoterpene, methanol and acetaldehyde emissions from the stems of mature Scots pines (Pinus sylvestris L.) in a boreal forest over three summers. We analysed the effects of temperature, soil water content, tree water status, transpiration and growth on the VOC emissions and used generalized linear models to test their relative importance in explaining the emissions. We show that Scots pine stems are considerable sources of monoterpenes, methanol and acetaldehyde, and their emissions are strongly regulated by temperature. However, even small changes in water availability affected the emission potentials: increased soil water content increased the monoterpene emissions within a day, whereas acetaldehyde and methanol emissions responded within 2-4 days. This lag corresponded to their transport time in the xylem sap from the roots to the stem. Moreover, the emissions of monoterpenes, methanol and acetaldehyde were influenced by the cambial growth rate of the stem with 6-10-day lags.


Asunto(s)
Acetaldehído/metabolismo , Cámbium/metabolismo , Metanol/metabolismo , Monoterpenos/metabolismo , Pinus sylvestris/metabolismo , Tallos de la Planta/metabolismo , Cámbium/crecimiento & desarrollo , Cámbium/fisiología , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/fisiología , Agua/metabolismo
19.
Nat Commun ; 11(1): 128, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913273

RESUMEN

Boreal forests are dominated by evergreen conifers that show strongly regulated seasonal photosynthetic activity. Understanding the mechanisms behind seasonal modulation of photosynthesis is crucial for predicting how these forests will respond to changes in seasonal patterns and how this will affect their role in the terrestrial carbon cycle. We demonstrate that the two co-occurring dominant boreal conifers, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies), use contrasting mechanisms to reactivate photosynthesis in the spring. Scots pine downregulates its capacity for CO2 assimilation during winter and activates alternative electron sinks through accumulation of PGR5 and PGRL1 during early spring until the capacity for CO2 assimilation is recovered. In contrast, Norway spruce lacks this ability to actively switch between different electron sinks over the year and as a consequence suffers severe photooxidative damage during the critical spring period.


Asunto(s)
Fotosíntesis , Picea/metabolismo , Pinus sylvestris/metabolismo , Dióxido de Carbono/metabolismo , Picea/genética , Pinus sylvestris/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año
20.
J Photochem Photobiol B ; 201: 111659, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31698219

RESUMEN

Stressors of different natures, including drought stress, substantially compromise the ability of plants to effectively and safely utilize light energy. We investigated the influence of water stress on the photosynthetic processes in Picea abies and Pinus sylvestris, two species with contrasting drought sensitivities. Spruce and pine seedlings were exposed to polyethylene glycol 6000-induced water deficits of different intensities and durations. The maintenance of photosystem I (PSI) oxidation in spruce required increased photosynthetic control and led to the increased reduction of the plastoquinone pool, which was not the case in pine seedlings. As a result of increased excitation pressure, photosystem II (PSII) inactivation was observed in spruce plants, whereas in pine, the decreased PSII photochemistry was likely due to sustained non-photochemical quenching. Downregulation of PSII photochemistry and maintenance of PSI in an oxidized state were linked with the prevention of oxidative stress, even under severe water deficit. The decreased photosynthetic pigment content and photosynthetic gene expression suggested the coordinated downregulation of photosynthetic apparatus components under water stress to reduce light energy absorption. In summary, the observed adaptative mechanisms of pine and spruce to water stress may be similar to the well-studied adaptative mechanisms to winter stress, which may indicate the universality of protective mechanisms under various stresses in conifers.


Asunto(s)
Sequías , Fotosíntesis , Picea/metabolismo , Pinus sylvestris/metabolismo , Peroxidación de Lípido , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA