Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 218: 109215, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977628

RESUMEN

We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSPNMDA) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.1 mg/kg, a dose that produces brain concentrations below those required to block fEPSPNMDA or LTP. Moreover, using in-vivo calcium imaging of place cells and spatial engrams to directly assess hippocampal spatial coding, we found that (R)-CPP dose-dependently reduced the development of place cells and interfered with the formation of stable spatial engrams when it was administered prior to exposing mice to a novel context. Both effects occurred at doses that interfered with freezing to context in CPFE experiments. We conclude that (R)-CPP blocks memory formation by interfering with hippocampal function, but that it does so by modulating NMDARs at sites that are not engaged in vitro in the same manner that they are in vivo - perhaps through interneuron circuits that do not contribute to fEPSPs and are not required to elicit LTP using standard induction protocols in vitro, but are essential for successful mnemonic function in vivo.


Asunto(s)
Células de Lugar , Animales , Ratones , Hipocampo , Memoria , N-Metilaspartato/farmacología , Células de Lugar/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054826

RESUMEN

Hippocampal place cells are a well-known object in neuroscience, but their place field formation in the first moments of navigating in a novel environment remains an ill-defined process. To address these dynamics, we performed in vivo imaging of neuronal activity in the CA1 field of the mouse hippocampus using genetically encoded green calcium indicators, including the novel NCaMP7 and FGCaMP7, designed specifically for in vivo calcium imaging. Mice were injected with a viral vector encoding calcium sensor, head-mounted with an NVista HD miniscope, and allowed to explore a completely novel environment (circular track surrounded by visual cues) without any reinforcement stimuli, in order to avoid potential interference from reward-related behavior. First, we calculated the average time required for each CA1 cell to acquire its place field. We found that 25% of CA1 place fields were formed at the first arrival in the corresponding place, while the average tuning latency for all place fields in a novel environment equaled 247 s. After 24 h, when the environment was familiar to the animals, place fields formed faster, independent of retention of cognitive maps during this session. No cumulation of selectivity score was observed between these two sessions. Using dimensionality reduction, we demonstrated that the population activity of rapidly tuned CA1 place cells allowed the reconstruction of the geometry of the navigated circular maze; the distribution of reconstruction error between the mice was consistent with the distribution of the average place field selectivity score in them. Our data thus show that neuronal activity recorded with genetically encoded calcium sensors revealed fast behavior-dependent plasticity in the mouse hippocampus, resulting in the rapid formation of place fields and population activity that allowed the reconstruction of the geometry of the navigated maze.


Asunto(s)
Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Calcio/metabolismo , Células de Lugar/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Microscopía Fluorescente , Células de Lugar/metabolismo
3.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686348

RESUMEN

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Lugar/metabolismo , Receptores Inmunológicos/genética , Proteínas Roundabout
4.
Elife ; 102021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533133

RESUMEN

Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Conducta Alimentaria , Hipocampo/fisiología , Células de Lugar/fisiología , Conducta Predatoria , Asunción de Riesgos , Percepción Espacial , Potenciales de Acción , Amígdala del Cerebelo/metabolismo , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Hipocampo/metabolismo , Masculino , Vías Nerviosas/fisiología , Optogenética , Células de Lugar/metabolismo , Ratas Long-Evans , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443144

RESUMEN

Hippocampal cells are central to spatial and predictive representations, and experience replays by place cells are crucial for learning and memory. Nonetheless, how hippocampal replay patterns dynamically change during the learning process remains to be elucidated. Here, we designed a spatial task in which rats learned a new behavioral trajectory for reward. We found that as rats updated their behavioral strategies for a novel salient location, hippocampal cell ensembles increased theta-sequences and sharp wave ripple-associated synchronous spikes that preferentially replayed salient locations and reward-related contexts in reverse order. The directionality and contents of the replays progressively varied with learning, including an optimized path that had never been exploited by the animals, suggesting prioritized replays of significant experiences on a predictive map. Online feedback blockade of sharp wave ripples during a learning process inhibited stabilizing optimized behavior. These results implicate learning-associated experience replays that act to learn and reinforce specific behavioral strategies.


Asunto(s)
Hipocampo/metabolismo , Aprendizaje/fisiología , Aprendizaje Espacial/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Hipocampo/fisiología , Masculino , Memoria/fisiología , Neuronas/fisiología , Células de Lugar/metabolismo , Ratas , Ratas Long-Evans , Refuerzo en Psicología , Recompensa
6.
Dev Dyn ; 249(9): 1127-1146, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32319191

RESUMEN

BACKGROUND: Understanding developmental processes requires the unambiguous identification of cells and tissues, and the selective manipulation of the properties of those cells and tissues. Both requirements can most efficiently be satisfied through the use of GAL4/GFP enhancer-trap lines. No such lines, however, have been characterized for the study of early leaf development in the Columbia-0 reference genotype of Arabidopsis. RESULTS: Here we address this limitation by identifying and characterizing a set of GAL4/GFP enhancer-trap lines in the Columbia-0 background for the specific labeling of cells and tissues during early leaf development, and for the targeted expression of genes of interest in those cells and tissues. CONCLUSIONS: By using one line in our set to address outstanding questions in leaf vein patterning, we show that these lines can be used to address key questions in plant developmental biology.


Asunto(s)
Arabidopsis , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Hojas de la Planta , Plantas Modificadas Genéticamente , Arabidopsis/embriología , Arabidopsis/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células de Lugar/metabolismo , Hojas de la Planta/embriología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/genética
7.
PLoS One ; 14(11): e0225100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31725775

RESUMEN

The medial entorhinal cortex and the hippocampus are brain regions specialized in spatial information processing. While an animal navigates around an environment, grid cells in the medial entorhinal cortex spike at multiple discrete locations, forming hexagonal grid patterns, and each grid cell is spatiotemporally dynamic with a different grid size, spacing, and orientation. In contrast, place cells in the hippocampus spike when an animal is at one or more specific locations, called a "place field". While an animal traverses through a place field, the place cell's spike phases relative to the hippocampal theta-frequency oscillation advance in phase, known as the "spike phase precession" phenomenon and each spike encodes the specific location within the place field. Interestingly, the medial entorhinal cortical grid cells and the hippocampal place cells are only one excitatory synapse apart. However, how the spatiotemporally dynamic multi-peaked grid cell activities are transformed into hippocampal place cell activities with spike phase precession phenomenon is yet unknown. To address this question, we construct an anatomically and physiologically realistic neural network model comprised of 10,000 grid cell models, each with a spatiotemporally dynamic grid patterns and a place cell model connected by excitatory synapses. Using this neural network model, we show that grid cells' spike activities with spatiotemporally random and diverse grid orientation, spacing, and phases as inputs to place cell are able to generate a place field with spike phase precession. These results indicate that spatiotemporally random and diverse grid cell spike activities are essential for the formation of place cell activity observed in vivo.


Asunto(s)
Comunicación Celular , Transdiferenciación Celular , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Células de Red/metabolismo , Modelos Neurológicos , Células de Lugar/metabolismo , Algoritmos , Red Nerviosa , Sinapsis/fisiología
8.
Neurobiol Learn Mem ; 161: 122-134, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30965113

RESUMEN

A clue to hippocampal function has been the discovery of place cells, leading to the 'spatial map' theory. Although the firing attributes of place cells are well documented, little is known about the organization of the spatial map. Unit recording studies, thus far, have reported a low coherence between neighboring cells and geometric space, leading to the prevalent view that the spatial map is not topographically organized. However, the number of simultaneously recorded units is severely limited, rendering construction of the spatial map nearly impossible. To visualize the functional organization of place cells, we used the activity-dependent immediate-early gene Zif268 in combination with behavioral, pharmacological and electrophysiological methods, in mice and rats exploring an environment. Here, we show that in animals confined to a small part of a maze, principal cells in the CA1/CA3 subfields of the dorsal hippocampus immunoreactive (IR) for Zif268 adhere to a 'cluster-type' organization. Unit recordings confirmed that the Zif268 IR clusters correspond to active place cells, while blockade of NMDAR (which alters place fields) disrupted the Zif268 IR clusters. Contrary to the prevalent view that the spatial map consists of a non-topographic neural network, our results provide evidence for a 'cluster-type' functional organization of hippocampal neurons encoding for space.


Asunto(s)
Región CA1 Hipocampal , Región CA3 Hipocampal , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Aprendizaje por Laberinto/fisiología , Red Nerviosa , Células de Lugar , Percepción Espacial/fisiología , Animales , Conducta Animal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Células de Lugar/citología , Células de Lugar/metabolismo , Células de Lugar/fisiología , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
9.
Nat Commun ; 10(1): 630, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733457

RESUMEN

Place and grid cells in the hippocampal formation provide foundational representations of environmental location, and potentially of locations within conceptual spaces. Some accounts predict that environmental sensory information and self-motion are encoded in complementary representations, while other models suggest that both features combine to produce a single coherent representation. Here, we use virtual reality to dissociate visual environmental from physical motion inputs, while recording place and grid cells in mice navigating virtual open arenas. Place cell firing patterns predominantly reflect visual inputs, while grid cell activity reflects a greater influence of physical motion. Thus, even when recorded simultaneously, place and grid cell firing patterns differentially reflect environmental information (or 'states') and physical self-motion (or 'transitions'), and need not be mutually coherent.


Asunto(s)
Células de Red/metabolismo , Células de Lugar/metabolismo , Animales , Células de Red/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Neuronas/citología , Neuronas/metabolismo , Células de Lugar/citología , Percepción Espacial/fisiología
10.
Cell Rep ; 23(10): 2967-2975, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874583

RESUMEN

The phosphoinositide phosphatase synaptojanin 1 (SYNJ1) is a key regulator of synaptic function. We first tested whether SYNJ1 contributes to phenotypic variations in familial Alzheimer's disease (FAD) and show that SYNJ1 polymorphisms are associated with age of onset in both early- and late-onset human FAD cohorts. We then interrogated whether SYNJ1 levels could directly affect memory. We show that increased SYNJ1 levels in autopsy brains from adults with Down syndrome (DS/AD) are inversely correlated with synaptophysin levels, a direct readout of synaptic integrity. We further report age-dependent cognitive decline in a mouse model overexpressing murine Synj1 to the levels observed in human sporadic AD, triggered through hippocampal hyperexcitability and defects in the spatial reproducibility of place fields. Taken together, our findings suggest that SYNJ1 contributes to memory deficits in the aging hippocampus in all forms of AD.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Células de Lugar/metabolismo , Enfermedad de Alzheimer/genética , Animales , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Haplotipos/genética , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Monoéster Fosfórico Hidrolasas/genética , Polimorfismo de Nucleótido Simple/genética , Sinapsis/patología
11.
Curr Biol ; 28(6): 836-846.e4, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29502949

RESUMEN

Incentives drive goal-directed behavior; however, how they impact the formation and stabilization of goal-relevant hippocampal maps remains unknown. Since dopamine is involved in reward processing, affects hippocampal-dependent behavior, and modulates hippocampal plasticity, we hypothesized that local dopaminergic transmission in the hippocampus serves to mold the formation and updating of hippocampal cognitive maps to adaptively represent reward-predicting space of sensory inputs. We recorded CA1 place cells of rats throughout training on a spatial extra-dimensional set-shift task. After learning to rely on one of two orthogonal sets of cues, we introduced a rule shift and infused locally the D1/5 receptor (D1/5R) antagonist SCH23390. Successful learning was accompanied by place cell reorientation to represent rule-relevant spatial dimension. SCH23390 infusion prevented this remapping and, consequently, impaired learning, causing perseveration. These findings suggest that dopaminergic innervation provides reward information to the hippocampus and is critical for the stabilization of goal-related hippocampal representation, contributing to successful goal-directed behavior.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Dopamina/metabolismo , Células de Lugar/fisiología , Animales , Región CA1 Hipocampal/fisiología , Señales (Psicología) , Dopamina/fisiología , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Células de Lugar/metabolismo , Ratas , Ratas Long-Evans , Receptores de Dopamina D1/metabolismo , Recompensa , Aprendizaje Espacial/fisiología
12.
J Membr Biol ; 249(6): 801-811, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27638176

RESUMEN

Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca2+ and Cl- transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Characeae/citología , Characeae/metabolismo , Descubrimiento de Drogas , Células de Lugar/metabolismo , Descubrimiento de Drogas/métodos , Fenómenos Electrofisiológicos/efectos de los fármacos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/metabolismo , Lactalbúmina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ácido Oléico/farmacología , Ácidos Oléicos/metabolismo
13.
Methods Mol Biol ; 1411: 45-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147033

RESUMEN

Due to rather limited sequence similarity, targeted identification of plant nuclear envelope and nuclear pore complex proteins has mainly followed two routes: (1) advanced computational identification followed by experimental verification and (2) immunoaffinity purification of complexes followed by mass spectrometry. Following candidate identification, fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) provide powerful tools to verify protein-protein interactions in situ at the NE. Here, we describe these methods for the example of Arabidopsis thaliana nuclear pore and nuclear envelope protein identification.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Células de Lugar/metabolismo , Proteoma , Proteómica , Animales , Biología Computacional/métodos , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana/química , Microscopía Fluorescente , Membrana Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA