Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 728
1.
Malar J ; 23(1): 130, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693572

BACKGROUND: The sequestration of Plasmodium falciparum infected erythrocytes in the placenta, and the resulting inflammatory response affects maternal and child health. Despite existing information, little is known about the direct impact of P. falciparum on the placental barrier formed by trophoblast and villous stroma. This study aimed to assess placental tissue damage caused by P. falciparum in human placental explants (HPEs). METHODS: HPEs from chorionic villi obtained of human term placentas (n = 9) from normal pregnancies were exposed to P. falciparum-infected erythrocytes (IE) for 24 h. HPEs were embedded in paraffin blocks and used to study tissue damage through histopathological and histochemical analysis and apoptosis using TUNEL staining. Culture supernatants were collected to measure cytokine and angiogenic factors and to determine LDH activity as a marker of cytotoxicity. A subset of archived human term placenta paraffin-embedded blocks from pregnant women with malaria were used to confirm ex vivo findings. RESULTS: Plasmodium falciparum-IE significantly damages the trophoblast layer and the villous stroma of the chorionic villi. The increased LDH activity and pathological findings such as syncytial knots, fibrin deposits, infarction, trophoblast detachment, and collagen disorganization supported these findings. The specific damage to the trophoblast and the thickening of the subjacent basal lamina were more pronounced in the ex vivo infection. In contrast, apoptosis was higher in the in vivo infection. This disparity could be attributed to the duration of exposure to the infection, which significantly varied between individuals naturally exposed over time and the 24-h exposure in the ex vivo HPE model. CONCLUSION: Exposure to P. falciparum-IE induces a detachment of the syncytiotrophoblast, disorganization of the stroma villi, and an increase in apoptosis, alterations that may be associated with adverse results such as intrauterine growth restriction and low birth weight.


Chorionic Villi , Plasmodium falciparum , Trophoblasts , Humans , Female , Chorionic Villi/parasitology , Chorionic Villi/pathology , Pregnancy , Plasmodium falciparum/physiology , Trophoblasts/parasitology , Apoptosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Placenta/parasitology , Placenta/pathology , Cytokines/metabolism
2.
Malar J ; 23(1): 116, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664687

BACKGROUND: Pregnancy Associated Malaria (PAM) include malaria in pregnancy (MiP), placental malaria (PM), and congenital malaria (CM). The evidence available in Colombia on PAM focuses on one of the presentations (MiP, PM or CM), and no study longitudinally analyses the infection from the pregnant woman, passing through the placenta, until culminating in the newborn. This study determined the frequency of MiP, PM, and CM caused by Plasmodium vivax, Plasmodium falciparum, or mixed infections, according to Thick Blood Smear (TBS) and quantitative Polymerase Chain Reaction (qPCR). Identifying associated factors of PAM and clinical-epidemiological outcomes in northwestern Colombia. METHODS: Prospective study of 431 pregnant women, their placenta, and newborns registered in the data bank of the research Group "Salud y Comunidad César Uribe Piedrahíta" which collected information between 2014 and 2020 in endemic municipalities of the departments of Córdoba and Antioquia. The frequency of infection was determined with 95% confidence intervals. Comparisons were made with the Chi-square test, Student t-test, prevalence ratios, and control for confounding variables by log-binomial regression. RESULTS: The frequency of MiP was 22.3% (4.6% using TBS), PM 24.8% (1.4% using TBS), and CM 11.8% (0% using TBS). Using TBS predominated P. vivax. Using qPCR the proportions of P. vivax and P. falciparum were similar for MiP and PM, but P. falciparum predominated in CM. The frequency was higher in nulliparous, and women with previous malaria. The main clinical effects of PAM were anaemia, low birth weight, and abnormal APGAR score. CONCLUSIONS: The magnitude of infections was not detected with TBS because most cases were submicroscopic (TBS-negative, qPCR-positive). This confirmed the importance of improving the molecular detection of cases. PAM continue being underestimated in the country due to that in Colombia the control programme is based on TBS, despite its outcomes on maternal, and congenital health.


Malaria, Falciparum , Malaria, Vivax , Pregnancy Complications, Parasitic , Humans , Female , Pregnancy , Colombia/epidemiology , Prospective Studies , Adult , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Young Adult , Infant, Newborn , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/parasitology , Adolescent , Plasmodium falciparum/isolation & purification , Prevalence , Plasmodium vivax/isolation & purification , Plasmodium vivax/physiology , Placenta/parasitology , Placenta Diseases/epidemiology , Placenta Diseases/parasitology
3.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632598

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Forkhead Transcription Factors , MicroRNAs , Toxoplasma , Animals , Female , Mice , Pregnancy , 3' Untranslated Regions , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , MicroRNAs/genetics , Placenta/metabolism , Placenta/parasitology , Placenta/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Signal Transduction , Toxoplasma/pathogenicity , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
4.
PLoS Comput Biol ; 19(12): e1011726, 2023 Dec.
Article En | MEDLINE | ID: mdl-38117828

Plasmodium falciparum (Pf) is responsible for the most lethal form of malaria. VAR2CSA is an adhesin protein expressed by this parasite at the membrane of infected erythrocytes for attachment to the placenta, leading to pregnancy-associated malaria. VAR2CSA is a large 355 kDa multidomain protein composed of nine extracellular domains, a transmembrane helix, and an intracellular domain. VAR2CSA binds to Chondroitin Sulphate A (CSA) of the proteoglycan matrix of the placenta. Shear flow, as the one occurring in blood, has been shown to enhance the (VAR2CSA-mediated) adhesion of Pf-infected erythrocytes on the CSA-matrix. However, the underlying molecular mechanism governing this enhancement has remained elusive. Here, we address this question by using equilibrium, force-probe, and docking-based molecular dynamics simulations. We subjected the VAR2CSA protein-CSA sugar complex to a force mimicking the tensile force exerted on this system due to the shear of the flowing blood. We show that upon this force exertion, VAR2CSA undergoes a large opening conformational transition before the CSA sugar chain dissociates from its main binding site. This preferential order of events is caused by the orientation of the molecule during elongation, as well as the strong electrostatic attraction of the sugar to the main protein binding site. Upon opening, two additional cryptic CSA binding sites get exposed and a functional dodecameric CSA molecule can be stably accommodated at these force-exposed positions. Thus, our results suggest that mechanical forces increase the avidity of VAR2CSA by turning it from a monovalent to a multivalent state. We propose this to be the molecular cause of the observed shear-enhanced adherence. Mechanical control of the valency of VAR2CSA is an intriguing hypothesis that can be tested experimentally and which is of relevance for the understanding of the malaria infection and for the development of anti placental-malaria vaccines targeting VAR2CSA.


Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Female , Pregnancy , Malaria, Falciparum/parasitology , Antigens, Protozoan , Binding Sites , Plasmodium falciparum , Placenta/metabolism , Placenta/parasitology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Erythrocytes/metabolism , Sugars
5.
Lab Anim (NY) ; 52(12): 315-323, 2023 Dec.
Article En | MEDLINE | ID: mdl-37932470

Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.


Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Female , Pregnancy , Placenta/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum , Antigens, Protozoan , Antibodies, Protozoan , Malaria/prevention & control , Aotidae , Immunity
6.
Front Cell Infect Microbiol ; 13: 1130901, 2023.
Article En | MEDLINE | ID: mdl-36968102

Toxoplasma gondii is a ubiquitous apicomplexan parasite that can infect virtually any warm-blooded animal. Acquired infection during pregnancy and the placental breach, is at the core of the most devastating consequences of toxoplasmosis. T. gondii can severely impact the pregnancy's outcome causing miscarriages, stillbirths, premature births, babies with hydrocephalus, microcephaly or intellectual disability, and other later onset neurological, ophthalmological or auditory diseases. To tackle T. gondii's vertical transmission, it is important to understand the mechanisms underlying host-parasite interactions at the maternal-fetal interface. Nonetheless, the complexity of the human placenta and the ethical concerns associated with its study, have narrowed the modeling of parasite vertical transmission to animal models, encompassing several unavoidable experimental limitations. Some of these difficulties have been overcome by the development of different human cell lines and a variety of primary cultures obtained from human placentas. These cellular models, though extremely valuable, have limited ability to recreate what happens in vivo. During the last decades, the development of new biomaterials and the increase in stem cell knowledge have led to the generation of more physiologically relevant in vitro models. These cell cultures incorporate new dimensions and cellular diversity, emerging as promising tools for unraveling the poorly understood T. gondii´s infection mechanisms during pregnancy. Herein, we review the state of the art of 2D and 3D cultures to approach the biology of T. gondii pertaining to vertical transmission, highlighting the challenges and experimental opportunities of these up-and-coming experimental platforms.


Toxoplasma , Toxoplasmosis , Animals , Humans , Pregnancy , Female , Placenta/parasitology , Toxoplasmosis/parasitology , Infectious Disease Transmission, Vertical , Models, Animal
7.
Vet Parasitol ; 315: 109889, 2023 Mar.
Article En | MEDLINE | ID: mdl-36753878

Toxoplasma gondii is a major cause of reproductive failure in small ruminants. Genotypic diversity of T. gondii strains has been associated with variations in phenotypic traits in in vitro and murine models. However, whether such diversity could influence the outcome of infection in small ruminants remains mostly unexplored. Here, we investigate the outcome of oral challenge in sheep at mid-pregnancy with 10 sporulated oocysts from three different T. gondii isolates belonging to archetypal II and III and selected according to their genetic and phenotypic variations shown in previous studies. Seventy-three pregnant sheep were divided in four groups: G1 infected with TgShSp1 isolate (type II, ToxoDB#3), G2 with TgShSp16 isolate (type II, ToxoDB#3), G3 with TgShSp24 isolate (type III, ToxoDB#2) and G4 of uninfected control sheep. Two different approaches were carried out within this study: (i) the outcome for the pregnancy after infection (n = 33) and (ii) the lesions and parasite tropism and burden at 14 and 28 days post infection (dpi) (n = 40). The onset of hyperthermia and seroconversion occurred one and two days later, respectively in G1 when compared to G2 and G3. However, sheep that suffered from reproductive failure, either by abortion, foetal dead at the time of euthanasia or stillbirth were similar among infected groups (50%, 40% and 47%, respectively). Histological lesions in placentomes and foetal tissues from euthanized animals from the second approach were only detected at 28 dpi and mainly in G1. At 14 dpi, T. gondii-DNA was only detected in G1 in the 11% of the placentomes. However, at 28 dpi the frequency of detection in placentomes was higher in G1 (96%) than in G2 and G3 (7% and 47%, respectively) besides in foetuses was lower in G2 (20%) than in G1 and G3 (100% and 87%, respectively). Regarding late abortions, stillbirths, and lambs of G1, G2 and G3, the frequency of microscopic lesions was similar between groups (79%, 78% and 67%, respectively) whereas T. gondii-DNA was evidenced in 100%, 55% and 100%, respectively. These recently obtained T. gondii isolates led to similar reproductive losses but intra- and inter-genotype variations in the rise of hyperthermia, dynamics of antibodies, frequency of lesions and parasite detection and distribution. Thus, the different phenotypic traits of the isolates could influence the outcome of the infection and mechanisms responsible for it, and further investigations are warranted.


Toxoplasma , Toxoplasmosis, Animal , Pregnancy , Female , Sheep , Animals , Mice , Toxoplasmosis, Animal/parasitology , Placenta/parasitology , Phenotype , Genotype , Ruminants
8.
Parasitol Res ; 122(3): 781-788, 2023 Mar.
Article En | MEDLINE | ID: mdl-36596902

Neospora caninum is a protozoan parasite which can infect a range of animals, including dogs, cattle, and sheep. Bovine neosporosis, which mainly causes abortion in cattle, results in substantial economic losses worldwide. To study the effects of N. caninum infection on the placenta, a pregnant mouse model for N. caninum infection was established. The litter size (8.6 ± 1.5) and the number of live pups (6.4 ± 1.8) of infected dams were significantly lower compared with those of non-infected dams. Trophoblast cell shrinkage and a large number of apoptosomes were detected in the placentas of the infected group. The parasite load in the placental tissue was significantly higher with time after infection. Likewise, apoptosis of placental trophoblast cells significantly increased with time after infection. Among the 66 apoptotic genes detected in this study, eight genes, including Bcl-2, were significantly differentially expressed by about > tenfold in infected and uninfected mice. The expression of BAX and tumor necrosis factor-alpha (TNF-α) was upregulated in the placental cells of the infected mice, whereas the expression of BCL-2 was downregulated. Enzyme-linked immunosorbent assays (ELISAs) showed that apoptotic protease caspase-3 level was significantly increased in placental cell suspension, and insulin-like growth factor (IGF)-2 level was significantly reduced. Acetylcholine (ACH) and placental prolactin (PL) levels were initially decreased but eventually increased. In summary, infection of mice with N. caninum caused apoptotic damage to the placental tissues, cells, and genes and affected the normal physiological functions of placenta, which may largely explain the adverse pregnancy outcomes caused by N. caninum infection in mice.


Cattle Diseases , Coccidiosis , Neospora , Pregnancy , Animals , Cattle , Female , Mice , Dogs , Sheep , Placenta/parasitology , Mice, Inbred BALB C , Coccidiosis/veterinary , Trophoblasts , Neospora/genetics , Proto-Oncogene Proteins c-bcl-2 , Cattle Diseases/parasitology
9.
Niger J Clin Pract ; 25(9): 1501-1506, 2022 Sep.
Article En | MEDLINE | ID: mdl-36149211

Background: Detection of malaria in pregnancy poses a huge challenge in Sub-Saharan Africa. Accurate diagnosis enables timely and appropriate clinical management. Aims: This study aimed to compare the accuracy of peripheral venous blood smear microscopy (PVBSM) and a rapid diagnostic test detecting histidine-rich protein 2 in the blood (RDT-HRP2) with placental histology as the control in the diagnosis of malaria in pregnancy in Nigerian women. Materials and Methods: This was a comparative, cross-sectional study conducted between January and July 2017. Asymptomatic pregnant women who presented to the labor ward and who gave informed consent had peripheral venous blood samples as well as placental tissue obtained following delivery. The blood samples obtained were tested for malaria parasites using PVBSM and RDT-HRP2 in blood, while the placenta was subjected to histology. Results: A total of 326 patients participated in the study. The prevalence of malaria in pregnancy was 13.8%, 17.8%, and 32.8% using PVBSM, RDT-HRP2, and placental histology. The sensitivity, specificity, and accuracy of PVBSM were 40.2%, 99.1%, and 79.8% and the corresponding values for RDT-HRP2 were 49.5%, 97.7%, and 81.9%. The positive predictive value was 95.6% for PVBSM and 91.4% for RDT-HRP2 and the negative predictive value was 77.2% for PVBSM and 79.9% for RDT- HRP2. Conclusions: The diagnostic performances of both tests were comparable; however, RDT-HRP2 had a higher sensitivity and accuracy than PVBSM for the diagnosis of malaria in pregnancy.


Malaria, Falciparum , Malaria , Cross-Sectional Studies , Diagnostic Tests, Routine , Female , Histidine , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Microscopy , Placenta/parasitology , Plasmodium falciparum , Pregnancy , Sensitivity and Specificity
10.
Rev. peru. med. exp. salud publica ; 39(3): 302-311, jul.-sep. 2022. tab, graf
Article Es | LILACS | ID: biblio-1410008

RESUMEN Objetivos. Evaluar la exactitud de gota gruesa (GG) frente a la reacción en cadena de la polimerasa (PCR) cuantitativa para la malaria asociada al embarazo (MAE). Materiales y métodos. Se realizó una revisión sistemática de pruebas diagnósticas en nueve bases de datos. Se evaluó la calidad metodológica con QUADAS. Se estimó sensibilidad, especificidad, cociente de probabilidad positivo (CPP) y negativo (CPN), razón de odds diagnóstica (ORD) y área bajo la curva ROC. Se determinó la heterogeneidad con el estadístico Q de Der Simonian-Laird y la incertidumbre con el porcentaje de peso de cada estudio sobre el resultado global. Resultados. Se incluyeron diez estudios con 5691 gestantes, 1415 placentas y 84 neonatos. En los estudios con nPCR (PCR anidada) y qPCR (PCR cuantitativa) como estándar, los resultados de exactitud diagnóstica fueron estadísticamente similares, con sensibilidad muy baja (50 y 54%, respectivamente), alta especificidad (99% en ambos casos), alto CPP y deficiente CPN. Usando nPCR la OR diagnóstica fue 162 (IC95%=66-401) y el área bajo la curva ROC fue 95%, mientras que con qPCR fueron 231 (IC95%=27-1951) y 78%, respectivamente. Conclusiones. Mediante un protocolo exhaustivo se demostró el bajo desarrollo de investigaciones sobre la exactitud diagnóstica de la GG en MAE. Se demostró que la microscopía tiene un desempeño deficiente para el diagnóstico de infecciones asintomáticas o de baja parasitemia, lo que afianza la importancia de implementar otro tipo de técnicas en el seguimiento y control de las infecciones por malaria en las gestantes, con el fin de lograr el control y posible eliminación de la MAE.


ABSTRACT Objective. To evaluate the accuracy of thick smear (TS) versus quantitative polymerase chain reaction (PCR) for pregnancy-associated malaria (PAM). Materials and methods. We carried out a systematic review of diagnostic tests in nine databases. Methodological quality was evaluated with QUADAS. Sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the ROC curve were estimated. Heterogeneity was determined with the Der Simonian-Laird Q method and uncertainty with the weighted percentage of each study on the overall result. Results. We included 10 studies with 5691 pregnant women, 1415 placentas and 84 neonates. In the studies with nested PCR (nPCR) and quantitative PCR (qPCR) as the standard, the diagnostic accuracy results were statistically similar, with very low sensitivity (50 and 54%, respectively), high specificity (99% in both cases), high PLR and poor NLR. When nPCR was used, the DOR was 162 (95%CI=66-401) and the area under the ROC curve was 95%, while with qPCR it was 231 (95%CI=27-1951) and 78%, respectively. Conclusions. We demonstrated that research on the diagnostic accuracy of TS in PAM is limited. Microscopy showed poor performance in the diagnosis of asymptomatic or low parasitemia infections, which reinforces the importance of implementing other types of techniques for the follow-up and control of malaria infections in pregnant women, in order to achieve the control and possible elimination of PAM.


Humans , Female , Pregnancy , Infant, Newborn , Polymerase Chain Reaction/standards , Pregnancy Complications, Parasitic/diagnosis , Diagnostic Techniques and Procedures/standards , Malaria/diagnosis , Placenta/parasitology , Meta-Analysis as Topic , Sensitivity and Specificity , Pregnancy Complications, Parasitic/parasitology
11.
Front Immunol ; 13: 909831, 2022.
Article En | MEDLINE | ID: mdl-35911674

Background: Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method: Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings: Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation: Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants' monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.


Antimalarials , Malaria, Falciparum , Membrane Glycoproteins , Placenta , Receptors, Immunologic , Antibodies, Protozoan , Female , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Interleukin-10 , Leukocyte Immunoglobulin-like Receptor B1/genetics , Leukocyte Immunoglobulin-like Receptor B1/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Monocytes/metabolism , Placenta/parasitology , Plasmodium falciparum , Pregnancy , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology
12.
Acta Trop ; 235: 106651, 2022 Nov.
Article En | MEDLINE | ID: mdl-35964709

Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.


Chagas Disease , MicroRNAs , Toxoplasma , Trypanosoma cruzi , Animals , Chagas Disease/veterinary , Dogs , Female , Humans , MicroRNAs/genetics , Placenta/parasitology , Pregnancy , Sheep , Toxoplasma/genetics , Trypanosoma cruzi/genetics
13.
Parasitol Int ; 91: 102640, 2022 Dec.
Article En | MEDLINE | ID: mdl-35933034

We performed a study of congenital toxoplasmosis of the first and third gestation periods in mice, and determined its effects on the embryos/fetuses, the placentae and the maternal organs. We infected pregnant BALB/c mice by i.v. injection of 2.5--10.0 × 106 tachyzoites of the ME49 T. gondii strain and euthanized them 72 h later. The tissues were analyzed by histopathology, immunohistochemistry and parasite-specific qPCR. Infections with the lowest dose induced remarkably different changes in the two thirds: a) all doses diminished the number of products/litter, the lowest dose only by 14%; but most embryos still visible were degenerated in the case of the first period, while the fetuses of the last third were perfectly preserved; b) the transmission rate in the first third was relatively high, but with a very low parasite burden; c) with the lowest dose, strong vascular changes (congestion, thrombosis and hemorrhage) predominated in the placentas of the first period, while they were absent in the last third; d) necrosis caused by T. gondii to maternal organs was much stronger during the last gestation period than in the first. Our results suggest that the vascular alterations at the placenta of the first third of pregnancy prevent embryo from large parasite burden, but provoke its death by starvation. In the last gestation period, there was poor control of parasite dissemination to the placenta and the fetus, but there was greater capacity of the product to defend itself from T. gondii.


Toxoplasma , Toxoplasmosis, Congenital , Animals , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Mothers , Placenta/parasitology , Pregnancy , Toxoplasmosis, Congenital/parasitology
14.
Malar J ; 21(1): 110, 2022 Mar 31.
Article En | MEDLINE | ID: mdl-35361195

BACKGROUND: Malaria in Mali remains a primary cause of morbidity and mortality, with women at high risk during pregnancy for placental malaria (PM). Risk for PM and its association with birth outcomes was evaluated in a rural to urban longitudinal cohort on the Bandiagara Escarpment and the District of Bamako. METHODS: Placental samples (N = 317) were collected from 249 mothers who were participants in a prospective cohort study directed by BIS in the years 2011 to 2019. A placental pathologist and research assistant evaluated the samples by histology in blinded fashion to assess PM infection stage and parasite density. Generalized estimating equations (GEE) were used to model the odds of PM infection. RESULTS: In a multivariable model, pregnancies in Bamako, beyond secondary education, births in the rainy season (instead of the hot dry season), and births to women who had ≥ 3 doses of sulfadoxine-pyrimethamine (SP) instead of no doses were associated with reduced odds of experiencing PM (active and past infections combined). Births in later years of the study were strongly associated with reduced odds of PM. Maternal age, which was positively associated with offspring year of birth, was significant as a predictor of PM only if offspring year of birth was omitted from the model. Gravidity was positively associated with both maternal age and offspring year of birth such that if either variable was included in the model, then gravidity was no longer significant. However, if maternal age or year of offspring birth were not adjusted for, then the odds of PM were nearly two-fold higher in primigravida compared to multigravida. Birth outcomes improved (+ 285 g birth weight, + 2 cm birth length, + 75 g placental weight) for women who had ≥ 3 doses of SP compared to no doses, but no difference was detected in birth weight or length for women who had 2 instead of ≥ 3 SP doses. However, at 2 instead of ≥ 3 doses placentas were 36 g lighter and the odds of low birth weight (< 2500 g) were 14% higher. Severe parasite densities (> 10% erythrocytes infected) were significantly associated with decreases in birth weight, birth length, and placental weight, as were chronic PM infections. The women who received no SP during pregnancy (7% of the study total) were younger and lacked primary school education. The women who received ≥ 3 doses of SP came from more affluent families. CONCLUSIONS: Women who received no doses of SP during pregnancy experienced the most disadvantageous birth outcomes in both Bamako and on the Bandiagara Escarpment. Such women tended to be younger and to have had no primary school education. Targeting such women for antenatal care, which is the setting in which SP is most commonly administered in Mali, will have a more positive impact on public health than focusing on the increment from two to three doses of SP, although that increment is also desirable.


Malaria , Placenta , Cohort Studies , Drug Combinations , Female , Gravidity , Humans , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Placenta/parasitology , Pregnancy , Prospective Studies , Pyrimethamine , Risk Factors , Sulfadoxine
15.
Malar J ; 21(1): 114, 2022 Apr 02.
Article En | MEDLINE | ID: mdl-35366882

BACKGROUND: Investigating whether the multiplicity of Plasmodium falciparum infection (MOI) is related to pregnancy outcomes, is of interest in sub-Saharan area where malaria is highly endemic. The present study aimed to characterize the genetic diversity of P. falciparum in women at delivery from Southern Brazzaville, and investigate whether the MOI is associated with maternal anaemia, preterm delivery, or low birth weight. METHODS: This was a cross sectional study carried out with samples collected between March 2014 and April 2015 from 371 women recruited at delivery at a Health Centre in southern Brazzaville, Republic of Congo. Matched peripheral, placental, and cord blood collected from each of the women at delivery were used for the detection of P. falciparum microscopic and submicroscopic parasitaemia, and parasite DNA genotyping by nested PCR. RESULTS: From 371 recruited women, 27 were positive to microscopic malaria parasitaemia while 223 women harboured submicroscopic parasitaemia. All msp-1 block 2 family allelic types (K1, MAD20 and RO33) were observed in all the three compartments of blood, with K1 being most abundant. K1 (with 12, 10, and 08 alleles in the peripheral, placental, and cord blood respectively) and MAD20 (with 10, 09, and 06 alleles in the respective blood compartments) were more diverse compared to RO33 (with 06, 06, and 05 alleles in the respective blood compartments). From the 250 women with microscopic and/or submicroscopic parasitaemia, 38.5%, 30.5%, and 18.4% of peripheral, placental and cord blood sample, respectively, harboured more than one parasite clone, and polyclonal infection was more prevalent in the peripheral blood of women with microscopic parasitaemia (54.5%) compared to those with submicroscopic parasitaemia (36.7%) (p = 0.02). The mean multiplicity of genotypes per microscopic and submicroscopic infection in peripheral blood was higher in anemic women (2.00 ± 0.23 and 1.66 ± 0.11, respectively) than in non-anaemic women (1.36 ± 0.15 and 1.45 ± 0.06, respectively) (p = 0.03 and 0.06). In logistic regression, women infected with four or more clones of the parasite were 9.4 times more likely to be anaemic than women harbouring one clone. This association, however, was only observed with the peripheral blood infection. No significant association was found between the MOI and low birth weight or preterm delivery. CONCLUSIONS: These results indicate that the genetic diversity of P. falciparum is high in pregnant women from southern Brazzaville in the Republic of Congo, and the multiplicity of the infection might represent a risk for maternal anaemia.


Plasmodium falciparum , Pregnancy Outcome , Congo/epidemiology , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Placenta/parasitology , Plasmodium falciparum/genetics , Pregnancy
16.
BMC Pregnancy Childbirth ; 22(1): 248, 2022 Mar 24.
Article En | MEDLINE | ID: mdl-35331181

BACKGROUND: Malaria in pregnancy can result in placental infection with fetal implications. This study aimed at assessing placental malaria (PM) prevalence and its associated factors in a cohort of pregnant women with peripheral malaria and their offspring. METHOD: The data were collected in the framework of a clinical trial on treatments for malaria in pregnant women . Placental malaria (PM) was diagnosed by histopathological detection of parasites and/or malaria pigment on placenta biopsies taken at delivery. Factors associated with PM were assessed using logistic regression. RESULTS: Out of 745 biopsies examined, PM was diagnosed in 86.8 % of women. Acute, chronic and past PM were retrieved in 11 (1.5 %), 170 (22.8 %), and 466 (62.6 %) women, respectively. A modifying effect was observed in the association of gravidity or anemia at the study start with pooled PM (presence of parasites and/or malaria pigment). In women under 30, gravidity ≤ 2 was associated with an increased prevalence of pooled PM but in women aged 30 years or more, gravidity was no more associated with pooled PM (OR 6.81, 95 % CI 3.18 - 14.60; and OR 0.52, 95 % CI 0.10 - 2.76, respectively). Anemia was associated with pooled PM in women under 30 (OR 1.96, 95 % CI 1.03 - 3.72) but not in women aged 30 years or more (OR 0.68, 95 % CI 0.31 - 1.49). Similarly, the association of gravidity with past-chronic PM depended also on age. A higher prevalence of active PM was observed in women under 30 presenting with symptomatic malaria (OR 3.79, 95 % CI 1.55 - 9.27), while there was no significant increase in the prevalence of active PM (presence of parasites only) in women with symptomatic malaria when aged 30 years or more (OR 0.42, 95 % CI 0.10 - 1.75). In women with chronic PM, the prevalence of low birth weight or prematurity was the highest (31.2 %) as compared with past PM or no PM. CONCLUSION: Despite the rapid diagnosis and efficacious treatment of peripheral infection, the prevalence of placental malaria remained high in women with P. falciparum peripheral infection in Nanoro, especially in younger women This underlines the importance of preventive measures in this specific group.


Malaria, Falciparum , Malaria , Adult , Burkina Faso/epidemiology , Female , Gravidity , Humans , Malaria/epidemiology , Malaria, Falciparum/parasitology , Placenta/parasitology , Pregnancy
17.
Parasitol Int ; 89: 102576, 2022 Aug.
Article En | MEDLINE | ID: mdl-35301119

Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.


Antigens, Protozoan , Coccidiosis , Infectious Disease Transmission, Vertical , Neospora , Animals , Antigens, Protozoan/metabolism , Brain/parasitology , Chemokines/metabolism , Coccidiosis/transmission , Female , Infectious Disease Transmission, Vertical/veterinary , Mice , Mice, Inbred C57BL , Neospora/pathogenicity , Placenta/parasitology , Pregnancy
18.
Travel Med Infect Dis ; 47: 102282, 2022.
Article En | MEDLINE | ID: mdl-35314344

BACKGROUND: Malaria remains a serious public health problem. Malaria caused 409,000 deaths in 2019, and 67% were children under 5 years old. Malaria-infected mothers exhibit several complications, including babies with low birth weight, stillbirth, preterm delivery, poor fetal intrauterine growth and maternal anemia. This review aims to provide an update on the immune response in pregnant women and the role of cytokines and chemokines in modulating immunity after infection by the Plasmodium parasite. METHODS: This review collects information from articles indexed in the main databases associated with malaria in pregnancy and its relationship with the immune response and cytokines. RESULTS: and Discussion: The most influential event in malaria pregnancies for pathology development is placental sequestration. During the gestation period, an imbalance in the immune response due to the over- and under-expression of cytokines promotes high rates of fetal mortality, miscarriage, maternal anemia, and low birth weight. In addition, hormones, parity, gestational age, and age of the mother are risks associated with malaria severity during pregnancy. CONCLUSIONS: The pathology of malaria pregnancy is dependent on factors such as cytokine imbalances, placental sequestration and hormones, parity, gestational age and age of the mother. Thus, a better understanding of immune mechanisms will provide information to improve results for disease treatment.


Anemia , Malaria, Falciparum , Malaria , Pregnancy Complications, Parasitic , Chemokines , Child , Child, Preschool , Cytokines , Female , Hormones , Humans , Infant, Newborn , Malaria/complications , Malaria, Falciparum/complications , Placenta/parasitology , Pregnancy , Stillbirth
19.
PLoS One ; 17(1): e0263092, 2022.
Article En | MEDLINE | ID: mdl-35077516

Knowledge about the relation of histopathological characteristics and mediators of physiological processes in the placenta malaria (PM) is poor, and that PM caused by Plasmodium vivax is almost null. The objective was to compare histopathological characteristics, cytokines and mediators of physiological processes in PM depending on the parasitic species, through a cross-sectional study in three groups: negative-PM, vivax-PM, falciparum-PM from Northwestern Colombia. The diagnosis of PM was made with thick blood smear, qPCR, and histopathology. Immuno-histochemical was made with EnVision system (Dako) and Zeiss Axio Imager M2 with light microscope. Cells in apoptosis were studied with the TUNEL technique. To measure the expression level of cytokines and mediators qRT-PCR was used. We included 179 placentas without PM and 87 with PM (53% P. vivax and 47% P. falciparum). At delivery, anemia was 25% in negative-PM, 60% in vivax-PM, and 44% in falciparum-PM group. The neonatal weight had an intense difference between groups with 3292±394g in negative-PM, 2,841±239 in vivax-PM, and 2,957±352 in falciparum-PM. The histopathological characteristics and CD+ cells in placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were infarction, fibrinoid deposits, calcification, cells in apoptosis, immune infiltrates in decidua and intervillous space, CD4+, CD8+, CD14+, CD56+, CD68+. The expression levels of mediators in the placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were Fas, FasL, HIF1α, Cox1, Cox2, VEGF, IL4, IL10, IFNγ, TNF, TGFß, FOXP3, and CTLA4. PM with P. falciparum and P. vivax, damages this organ and causes significant alteration of various physiological processes, which cause maternal anemia and a reduction in neonatal weight in degrees that are statistically and clinically significant. It is necessary that the search for plasmodial infection in pregnant and placenta goes from passive to active surveillance with adequate diagnostic capacity.


Malaria, Falciparum/metabolism , Malaria, Vivax/metabolism , Placenta/metabolism , Plasmodium falciparum/metabolism , Plasmodium vivax/metabolism , Pregnancy Complications, Parasitic/metabolism , Adolescent , Adult , Colombia , Cytokines/metabolism , Female , Humans , Placenta/parasitology , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Real-Time Polymerase Chain Reaction
20.
Am J Trop Med Hyg ; 106(3): 853-856, 2022 01 17.
Article En | MEDLINE | ID: mdl-35026728

Hemoglobin C is the second most common structural hemoglobinopathy in Africa, and carriers have a reduced risk of severe malaria. However, the effect of HbAC on the antibody response to malaria antigens in pregnancy has not been studied. Here, we measured PfEMP1-specific antibodies in plasma samples from 74 Beninese pregnant women with either HbAA or HbAC. IgG-mediated inhibition of VAR2CSA+ infected erythrocytes adhesion to chondroitin sulfate A (CSA) was also tested. PfEMP1-specific IgG levels to VAR2CSA were significantly lower in HbAC women, suggesting less exposure to VAR2CSA. In contrast, the percentage of VAR2CSA+-infected erythrocytes adhesion to CSA was not different between HbAA and HbAC women. Moreover, IgG levels to PfEMP1 variants associated with severe malaria were not significantly different between groups. The findings indicate similar exposure to Plasmodium falciparum parasites expressing PfEMP1 variants causing severe malaria, and justify more comprehensive studies of hemoglobinopathy-related qualitative and quantitative differences in PfEMP1-specific antibody responses.


Hemoglobinopathies , Malaria, Falciparum , Pregnancy Complications, Parasitic , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Erythrocytes/parasitology , Female , Hemoglobin C/genetics , Humans , Immunoglobulin G , Malaria, Falciparum/parasitology , Placenta/parasitology , Plasmodium falciparum , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Pregnant Women
...