Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 467(1-2): 51-65, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882234

RESUMEN

The coordination of tissue-level polarity with organism-level polarity is crucial in development, disease, and regeneration. Here, we characterize a new example of large-scale control of dynamic remodeling of body polarity. Exploiting the flexibility of the body plan in regenerating planarians, we used mirror duplication of the primary axis to show how established tissue-level polarity adapts to new organism-level polarity. Characterization of epithelial planar cell polarity revealed a remarkable reorientation of tissue polarity in double-headed planarians. This reorientation of cilia occurs even following irradiation-induced loss of all stem cells, suggesting independence of the polarity change from the formation of new cells. The presence of the two heads plays an important role in regulating the rate of change in overall polarity. We further present data that suggest that the nervous system itself adapts its polarity to match the new organismal anatomy as revealed by changes in nerve transport driving distinct regenerative outcomes. Thus, in planaria tissue-level polarity can dynamically reorient to match the organism-level anatomical configuration.


Asunto(s)
Cilios/metabolismo , Morfogénesis , Sistema Nervioso/embriología , Planarias/embriología , Células Madre/metabolismo , Animales
2.
Sci Rep ; 9(1): 18612, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819119

RESUMEN

The field of basal cognition seeks to understand how adaptive, context-specific behavior occurs in non-neural biological systems. Embryogenesis and regeneration require plasticity in many tissue types to achieve structural and functional goals in diverse circumstances. Thus, advances in both evolutionary cell biology and regenerative medicine require an understanding of how non-neural tissues could process information. Neurons evolved from ancient cell types that used bioelectric signaling to perform computation. However, it has not been shown whether or how non-neural bioelectric cell networks can support computation. We generalize connectionist methods to non-neural tissue architectures, showing that a minimal non-neural Bio-Electric Network (BEN) model that utilizes the general principles of bioelectricity (electrodiffusion and gating) can compute. We characterize BEN behaviors ranging from elementary logic gates to pattern detectors, using both fixed and transient inputs to recapitulate various biological scenarios. We characterize the mechanisms of such networks using dynamical-systems and information-theory tools, demonstrating that logic can manifest in bidirectional, continuous, and relatively slow bioelectrical systems, complementing conventional neural-centric architectures. Our results reveal a variety of non-neural decision-making processes as manifestations of general cellular biophysical mechanisms and suggest novel bioengineering approaches to construct functional tissues for regenerative medicine and synthetic biology as well as new machine learning architectures.


Asunto(s)
Bioingeniería/métodos , Tipificación del Cuerpo , Fenómenos Electrofisiológicos , Algoritmos , Animales , Ingeniería Biomédica , Biología Computacional , Simulación por Computador , Biología Evolutiva , Modelos Biológicos , Reconocimiento de Normas Patrones Automatizadas , Planarias/embriología , Lenguajes de Programación , Regeneración , Medicina Regenerativa , Transducción de Señal , Biología Sintética
3.
J Biol Chem ; 294(25): 9873-9887, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31076507

RESUMEN

PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1-knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Helminto/metabolismo , Homeostasis , Planarias/fisiología , Regeneración , Células Madre/citología , Animales , Proteínas Argonautas/química , Proteínas Argonautas/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Helminto/química , Proteínas del Helminto/genética , Humanos , Planarias/embriología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Madre/metabolismo , Técnicas del Sistema de Dos Híbridos
4.
Int J Dev Biol ; 63(1-2): 9-15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30919917

RESUMEN

Planarians are remarkable organisms that can regenerate their entire body from a tiny portion thereof. This capability is made possible by the persistence throughout the lifespan of these animals of a population of pluripotent stem cells known as neoblasts. Planarian neoblasts include both pluripotent stem cells and specialized lineage-committed progenitors that give rise to all mature cell types during regeneration and homeostatic cell turnover. However, little is known about the mechanisms that regulate neoblast differentiation. A recent study demonstrated that Smed-egfr-1, a homologue of the epidermal growth factor receptor (EGFR) family, is required for final differentiation, but not specification, of gut progenitor cells into mature cells. Given the expression by planarians of several EGFR homologues, it has been proposed that these homologues may have diverged functionally to regulate the differentiation of distinct cell types in these animals. In this study, we investigated the role of Smed-egfr-4 in eye regeneration. Compared with controls, animals in which this gene was silenced by RNA interference (RNAi) regenerated smaller eyes. Moreover, the numbers of both mature eye cell types, photoreceptor neurons and cells of the pigment cup, were significantly reduced in Smed-egfr-4(RNAi) animals. By contrast, these animals exhibited an increase in the numbers of eye progenitor cells expressing the specific markers Smed-ovo and Smed-sp6-9. These results suggest that Smed-egfr-4 is required not for the specification of eye progenitor cells but for their final differentiation, and support the view that in planarians the EGFR pathway might play a general role in regulating the differentiation of lineage-committed progenitors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Receptores ErbB/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Planarias/embriología , Regeneración , Células Madre/citología , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Diferenciación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Proteínas de Transporte de Membrana/genética , Planarias/genética , Planarias/fisiología , ARN Interferente Pequeño/genética , Células Madre/metabolismo
5.
Semin Cell Dev Biol ; 87: 95-104, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29802891

RESUMEN

An organizer is defined as a group of cells that secrete specific factors and can change the fate of adjacent cells and instruct a specific pattern. Spemann and Mangold were the first to use the term, when in 1938 they discovered that the dorsal blastopore lip of a salamander embryo induced a secondary axis after transplantation. Since then, several such regions have been identified in the embryos of many animal species. However, little is known about the presence of organizers at the adult stage, although some organizing activity must be required during regenerative processes to pattern the new tissue. In this study we review the current knowledge on planarians, flatworms that can regenerate any lost body parts, including their heads, within a few days. We will summarize the current data that made it possible to identify planarian anterior and posterior tips as regenerative organizers. We will present the current knowledge about the molecular networks that define each organizer, and we will discuss the presence of organizers in planarians during normal homeostasis. We will propose some unanswered questions concerning both planarian regeneration and regenerative medicine, and examine future research prospects in this field.


Asunto(s)
Planarias/fisiología , Regeneración/fisiología , Animales , Planarias/embriología
6.
Cell Rep ; 25(9): 2577-2590.e3, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485821

RESUMEN

The fundamental requirements for regeneration are poorly understood. Planarians can robustly regenerate all tissues after injury, involving stem cells, positional information, and a set of cellular and molecular responses collectively called the "missing tissue" or "regenerative" response. follistatin, which encodes an extracellular Activin inhibitor, is required for the missing tissue response after head amputation and for subsequent regeneration. We found that follistatin is required for the missing tissue response regardless of the wound context, but causes regeneration failure only after head amputation. This head regeneration failure involves follistatin-mediated regulation of Wnt signaling at wounds and is not a consequence of a diminished missing tissue response. All tested contexts of regeneration, including head regeneration, could occur with a defective missing tissue response, but at a slower pace. Our findings suggest that major cellular and molecular programs induced specifically by large injuries function to accelerate regeneration but are dispensable for regeneration itself.


Asunto(s)
Planarias/genética , Planarias/fisiología , Regeneración , Amputación Quirúrgica , Animales , Tipificación del Cuerpo , Folistatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cabeza , Modelos Biológicos , Planarias/embriología , Interferencia de ARN , Proteína Wnt1/metabolismo
7.
Invert Neurosci ; 17(2): 3, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28324191

RESUMEN

Puromycin-sensitive aminopeptidase (PSA) belongs to the M1 zinc metallopeptidase family. PSA is the most abundant aminopeptidase in the brain and plays a role in the metabolism of neuropeptides including those involved in neurodegeneration. A cDNA DjPsa was identified from the planarian Dugesia japonica cDNA library. It contains a 639-bp open reading frame corresponding to a deduced protein of 212 amino acids. Whole mount in situ hybridization revealed that DjPsa is expressed in the brain and ventral nerve cords of intact and regenerating animals and demonstrates a tissue and stage-specific expression pattern of DjPsa in developing embryos and larvae. Knocking down DjPsa gene expression with RNA interference during planarian regeneration inhibits the brain reformation completely. The results suggest that DjPsa is required for planarian brain regeneration.


Asunto(s)
Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Planarias/enzimología , Planarias/genética , Regeneración/genética , Animales , Tipificación del Cuerpo/genética , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Embrión no Mamífero , Biblioteca de Genes , Larva , Planarias/embriología , Planarias/crecimiento & desarrollo , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología
8.
Dev Cell ; 40(3): 248-263.e4, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28171748

RESUMEN

Planarian flatworms maintain their body plan in the face of constant internal turnover and can regenerate from arbitrary tissue fragments. Both phenomena require self-maintaining and self-organizing patterning mechanisms, the molecular mechanisms of which remain poorly understood. We show that a morphogenic gradient of canonical Wnt signaling patterns gene expression along the planarian anteroposterior (A/P) axis. Our results demonstrate that gradient formation likely occurs autonomously in the tail and that an autoregulatory module of Wnt-mediated Wnt expression both shapes the gradient at steady state and governs its re-establishment during regeneration. Functional antagonism between the tail Wnt gradient and an unknown head patterning system further determines the spatial proportions of the planarian A/P axis and mediates mutually exclusive molecular fate choices during regeneration. Overall, our results suggest that the planarian A/P axis is patterned by self-organizing patterning systems deployed from either end that are functionally coupled by mutual antagonism.


Asunto(s)
Tipificación del Cuerpo , Planarias/embriología , Planarias/fisiología , Regeneración/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Modelos Biológicos , Planarias/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
9.
Elife ; 62017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072387

RESUMEN

Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.


Asunto(s)
Células Madre Adultas/fisiología , Homeostasis , Planarias/embriología , Regeneración , Animales , Linaje de la Célula
10.
Development ; 143(22): 4149-4160, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27737903

RESUMEN

The ß-catenin-dependent Wnt pathway exerts multiple context-dependent roles in embryonic and adult tissues. In planarians, ß-catenin-1 is thought to specify posterior identities through the generation of an anteroposterior gradient. However, the existence of such a gradient has not been directly demonstrated. Here, we use a specific polyclonal antibody to demonstrate that nuclear ß-CATENIN-1 exists as an anteroposterior gradient from the pre-pharyngeal region to the tail of the planarian Schmidtea polychroa High levels in the posterior region steadily decrease towards the pre-pharyngeal region but then increase again in the head region. During regeneration, ß-CATENIN-1 is nuclearized in both anterior and posterior blastemas, but the canonical WNT1 ligand only influences posterior nuclearization. Additionally, ß-catenin-1 is required for proper anterior morphogenesis, consistent with the high levels of nuclear ß-CATENIN-1 observed in this region. We further demonstrate that ß-CATENIN-1 is abundant in developing and differentiated organs, and is particularly required for the specification of the germline. Altogether, our findings provide the first direct evidence of an anteroposterior nuclear ß-CATENIN-1 gradient in adult planarians and uncover novel, context-dependent roles for ß-catenin-1 during anterior regeneration and organogenesis.


Asunto(s)
Organogénesis/genética , Planarias , Regeneración/genética , beta Catenina/genética , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo/genética , Mapeo Cromosómico , Embrión no Mamífero , Femenino , Masculino , Morfogénesis/genética , Planarias/embriología , Planarias/crecimiento & desarrollo , Planarias/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética
11.
Dev Growth Differ ; 58(7): 609-19, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27530596

RESUMEN

Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments.


Asunto(s)
Biomarcadores/análisis , Diferenciación Celular , Mesodermo , Planarias/embriología , Planarias/efectos de la radiación , Tolerancia a Radiación , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/efectos de la radiación , Planarias/genética , Planarias/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Rayos X
12.
Dev Biol ; 418(1): 179-188, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542689

RESUMEN

The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians.


Asunto(s)
Factor de Transcripción GATA4/genética , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA6/genética , Intestinos/citología , Planarias/embriología , Regeneración/genética , Regeneración/fisiología , Células Madre/citología , Animales , Proliferación Celular/genética , Factor de Transcripción GATA4/biosíntesis , Factor de Transcripción GATA5/biosíntesis , Factor de Transcripción GATA6/biosíntesis , Mucosa Intestinal/metabolismo , Planarias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
Dev Biol ; 404(2): 21-34, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25956527

RESUMEN

E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation.


Asunto(s)
Planarias/embriología , Planarias/enzimología , Regeneración/genética , Células Madre/citología , Ubiquitina-Proteína Ligasas/genética , Animales , Diferenciación Celular/genética , Planarias/genética , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitina/metabolismo
14.
Mol Genet Genomics ; 290(4): 1277-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25585662

RESUMEN

The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Helminto/genética , Cadenas Ligeras de Miosina/genética , Planarias/genética , Regeneración/genética , Animales , Encéfalo/embriología , Encéfalo/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Hibridación in Situ , Microscopía Confocal , Datos de Secuencia Molecular , Cadenas Ligeras de Miosina/clasificación , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Filogenia , Planarias/embriología , Planarias/fisiología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Dev Biol ; 397(2): 305-19, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446032

RESUMEN

The development of a nervous system is a key innovation in the evolution of metazoans, which is illustrated by the presence of a common developmental toolkit for the formation of this organ system. Neurogenesis in the Spiralia, in particular the Platyhelminthes, is, however, poorly understood when compared with other animal groups. Here, we characterize embryonic neurogenesis in the freshwater flatworm Schmidtea polychroa and analyze the expression of soxB and a set of proneural bHLH genes, which are gene families with a well-established role in metazoan early neural development. We show that the nervous system is fully de novo assembled after the early embryo ingests the maternal nutrients. At early stages of neurogenesis, soxB1 genes are expressed in putative neural progenitor cells, whereas soxB2 and neural bHLH genes (achaete-scute, neuroD and beta3) are associated with late neurogenesis and the specification of neural subpopulations of the central and peripheral nervous system. Our findings are consistent with the role of proneural genes in other bilaterians, suggesting that the ancestral neural-specific gene regulatory network is conserved in triclads, despite exhibiting a divergent mode of development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso/embriología , Neurogénesis/fisiología , Planarias/embriología , Factores de Transcripción SOXB1/metabolismo , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Fluorescente , Datos de Secuencia Molecular , Faloidina , Filogenia , Factores de Transcripción SOXB1/genética , Alineación de Secuencia
16.
Biomed Res Int ; 2014: 679672, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309918

RESUMEN

Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.


Asunto(s)
Hipergravedad , Planarias/fisiología , Simulación de Ingravidez , Animales , Embrión no Mamífero/fisiología , Cabeza , Planarias/embriología , Regeneración/fisiología , Reproducción Asexuada/fisiología , Cola (estructura animal) , Factores de Tiempo
17.
Dev Biol ; 396(1): 150-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25278423

RESUMEN

Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ovario/embriología , Planarias/embriología , Receptores Citoplasmáticos y Nucleares/genética , Testículo/embriología , Animales , Diferenciación Celular , Femenino , Células Germinativas/citología , Masculino , Planarias/fisiología , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal
18.
Development ; 141(9): 1835-47, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24700819

RESUMEN

During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/ß-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/ß-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/ß-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.


Asunto(s)
Encéfalo/embriología , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Receptores ErbB/metabolismo , Planarias/embriología , Planarias/fisiología , Regeneración/fisiología , Transducción de Señal , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Modelos Biológicos , Organogénesis , Planarias/genética , Interferencia de ARN , Regeneración/genética , Transducción de Señal/genética , Factores de Tiempo
19.
Mech Dev ; 132: 69-78, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24434168

RESUMEN

To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction.


Asunto(s)
D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Ovario/embriología , Planarias/embriología , Reproducción Asexuada/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Células Germinativas/metabolismo , Masculino , Datos de Secuencia Molecular , Ovario/metabolismo , Planarias/genética , Planarias/metabolismo , Testículo/embriología , Testículo/metabolismo
20.
Genet Mol Res ; 13(1): 188-97, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24446302

RESUMEN

We examined STAG-related gene (DjStag) expression in the planarian Dugesia japonica. This species is common in Far Eastern countries. The DjStag cDNA includes 1362 bp and contains a 489-bp open reading frame corresponding to a deduced protein of 162 amino acids, with a 170-bp 5'-UTR and a 703-bp 3'-UTR. Phylogenetic analysis showed that DjStag is an STAG/STAG-like member. We examined the expression pattern of DjStag in this planarian during embryonic development by whole-mount in situ hybridization. DjStag was detected in embryonic cells in the germ band at early embryo stages. The number of DjStag-positive embryonic cells increased in stage 5. Later, it was mainly expressed in lateral region parenchyma. In juveniles, extensive expression of DjStag was observed not only in the head and tail regions, but also in the parenchyma between the epidermis and the gastrodermis. We conclude that DjStag is expressed in the cellular subset that will become the neoblast cells of the adult flatworm. DjStag may play an essential role in spatial and temporal regulation during planarian embryonic development.


Asunto(s)
Proteínas del Helminto/genética , Proteínas Nucleares/genética , Planarias/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Planarias/embriología , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...