Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805821

RESUMEN

Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Citoplasma/metabolismo , Sequías , Endonucleasas/antagonistas & inhibidores , Endonucleasas/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Células Vegetales/efectos de los fármacos , Células Vegetales/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Prolina/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
2.
Mol Plant ; 14(6): 921-936, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33689930

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule that regulates plant hormone and stress responses. The phytohormone abscisic acid (ABA) plays an important role in plant adaptation to unfavorable environmental conditions and induces the persulfidation of L-CYSTEINE DESULFHYDRASE1 (DES1) and the production of H2S in guard cells. However, it remains largely unclear how H2S and protein persulfidation participate in the relay of ABA signals. In this study, we discovered that ABSCISIC ACID INSENSITIVE 4 (ABI4) acts downstream of DES1 in the control of ABA responses in Arabidopsis. ABI4 undergoes persulfidation at Cys250 that is triggered in a time-dependent manner by ABA, and loss of DES1 function impairs this process. Cys250 and its persulfidation are essential for ABI4 function in the regulation of plant responses to ABA and the H2S donor NaHS during germination, seedling establishment, and stomatal closure, which are abolished in the ABI4Cys250Ala mutated variant. Introduction of the ABI4Cys250Ala variant into the abi4 des1 mutant did not rescue its hyposensitivity to ABA. Cys250 is critical for the binding of ABI4 to its cognate motif in the promoter of Mitogen-Activated Protein Kinase Kinase Kinase 18 (MAPKKK18), which propagates the MAPK signaling cascade induced by ABA. Furthermore, the DES1-mediated persulfidation of ABI4 enhances the transactivation activity of ABI4 toward MAPKKK18, and ABI4 can bind the DES1 promoter, forming a regulatory loop. Taken together, these findings advance our understanding of a post-translational regulatory mechanism and suggest that ABI4 functions as an integrator of ABA and MAPK signals through a process in which DES1-produced H2S persulfidates ABI4 at Cys250.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Quinasas Quinasa Quinasa PAM/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Regiones Promotoras Genéticas , Plantones/genética , Plantones/fisiología , Transducción de Señal , Factores de Transcripción/genética
3.
Plant J ; 106(2): 301-313, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33735498

RESUMEN

The leaf vascular bundle sheath cells (BSCs) that tightly envelop the leaf veins, are a selective and dynamic barrier to xylem sap water and solutes radially entering the mesophyll cells. Under normal conditions, xylem sap pH below 6 is presumably important for driving and regulating the transmembranal solute transport. Having discovered recently a differentially high expression of a BSC proton pump, AHA2, we now test the hypothesis that it regulates the xylem sap pH and leaf radial water fluxes. We monitored the xylem sap pH in the veins of detached leaves of wild-type Arabidopsis, AHA mutants and aha2 mutants complemented with AHA2 gene solely in BSCs. We tested an AHA inhibitor (vanadate) and stimulator (fusicoccin), and different pH buffers. We monitored their impact on the xylem sap pH and the leaf hydraulic conductance (Kleaf ), and the effect of pH on the water osmotic permeability (Pf ) of isolated BSCs protoplasts. We found that AHA2 is necessary for xylem sap acidification, and in turn, for elevating Kleaf . Conversely, AHA2 knockdown, which alkalinized the xylem sap, or, buffering its pH to 7.5, reduced Kleaf , and elevating external pH to 7.5 decreased the BSCs Pf . All these showed a causative link between AHA2 activity in BSCs and leaf radial hydraulic water conductance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hojas de la Planta/fisiología , ATPasas de Translocación de Protón/metabolismo , Xilema/fisiología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Xilema/enzimología , Xilema/metabolismo
4.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008769

RESUMEN

Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.


Asunto(s)
Inmunidad de la Planta , Estomas de Plantas/enzimología , Estomas de Plantas/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quitina/metabolismo , Modelos Biológicos , Transducción de Señal
5.
BMC Plant Biol ; 20(1): 524, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203377

RESUMEN

BACKGROUND: A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS: In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS: Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.


Asunto(s)
Caryophyllales/genética , Hongos/fisiología , Transcriptoma , Tipificación del Cuerpo/genética , Caryophyllales/enzimología , Caryophyllales/microbiología , Caryophyllales/ultraestructura , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura
6.
Planta ; 252(2): 20, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32671568

RESUMEN

MAIN CONCLUSION: ß-carbonic anhydrases, which function in regulating plant growth, C/N status, and stomata number, showed functional redundancy and divergence in Physcomitrella patens. Carbonic anhydrases (CAs) catalyze the interconversion of CO2 and HCO3-. Plants have three evolutionarily unrelated CA families: α-, ß-, and γ-CAs. ßCAs are abundant in plants and are involved in CO2 assimilation, stress responses, and stomata formation. Recent studies of ßCAs have mainly examined C3 or C4 plants, whereas their functions in non-vascular plants are mostly unknown. In this study, phylogenetic analysis revealed that the evolution of ßCAs were conserved between subaerial green algae and bryophytes after terrestrialization event, and ßCAs from some cyanobacteria might begin evolving for the adaptation of terrestrial environment/habitat. In addition, we investigated the physiological roles of ßCAs in the basal land plant Physcomitrella patens. High PpßCA expression levels in different tissues suggest that PpßCAs play important roles in development in P. patens. Plants treated with 1-10 mM NaHCO3 had higher fresh and dry weight, PpßCA expression, total CA activity, and photosynthetic yield (Fv/Fm) compared with water-treated plants. However, treatment with 10 mM NaHCO3 influenced the C/N status. Further study of six Ppßca single-gene mutants revealed that PpßCAs have functional redundancy and divergence in regulating the C/N ratio of plants and stomatal formation. This study provides new insight into the physiological roles of ßCAs in basal land plants.


Asunto(s)
Bryopsida/enzimología , Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Fotosíntesis , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo
7.
Plant Physiol Biochem ; 148: 53-61, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31927272

RESUMEN

In order to evaluate the genes involved in polyamines synthesis pathway and the role of nitric oxide synthase (NOS) and H2O2 in stomatal closure under drought stress, a research conducted with three irrigation levels (100, 50 and 25% field capacity) at 1, 3, 6 and 12 days on Rosa damascena Mill. HPLC and qPCR results showed that putrescine (Put) accumulation occurred at first day in both 50 and 25% of field capacity and then decreased the other days. Furthermore, Put accumulation in the indirect pathway (ADC, AIH and CPA) was more effective related to the direct pathway (ODC) under severe stress. Increased expression of genes involved in production of spermidine (Spd) and spermine (Spm) i.e., SAMDC, SPDS and SPMS correlated with the highest accumulation of Spd and Spm under 50% FC at 6 d and 25% FC at 12 d, respectively. Moreover, results showed that Put reduction simultaneously accumulated H2O2, which subsequently increased NOS expression suggesting a key signal for stomatal closure.


Asunto(s)
Sequías , Óxido Nítrico Sintasa , Estomas de Plantas , Poliaminas , Rosa , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Poliaminas/metabolismo , Rosa/enzimología , Rosa/genética , Espermidina/metabolismo , Espermina/metabolismo , Estrés Fisiológico/genética
8.
Plant Cell Environ ; 43(3): 624-636, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31734942

RESUMEN

Recent studies have demonstrated that hydrogen sulfide (H2 S) produced through the activity of l-cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2 S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2 S function in stomatal closure. We discovered that ABA-activated DES1 produces H2 S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2 S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2 S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2 S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2 S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2 S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Cistationina gamma-Liasa/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Sulfuro de Hidrógeno/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Fenotipo , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos
9.
Plant Physiol ; 181(3): 1314-1327, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548265

RESUMEN

Calmodulin (CaM) regulates plant disease responses through its downstream calmodulin-binding proteins (CaMBPs) often by affecting the biosynthesis or signaling of phytohormones, such as jasmonic acid (JA) and salicylic acid. However, how these CaMBPs mediate plant hormones and other stress resistance-related signaling remains largely unknown. In this study, we conducted analyses in Arabidopsis (Arabidopsis thaliana) on the functions of AtIQM1 (IQ-Motif Containing Protein1), a Ca2+-independent CaMBP, in JA biosynthesis and defense against the necrotrophic pathogen Botrytis cinerea using molecular, biochemical, and genetic analyses. IQM1 directly interacted with and promoted CATALASE2 (CAT2) expression and CAT2 enzyme activity and indirectly increased the activity of the JA biosynthetic enzymes ACX2 and ACX3 through CAT2, thereby positively regulating JA content and B. cinerea resistance. In addition, in vitro assays showed that in the presence of CaM5, IQM1 further enhanced the activity of CAT2, suggesting that CaM5 may affect the activity of CAT2 by combining with IQM1 in the absence of Ca2+ Our data indicate that IQM1 is a key regulatory factor in signaling of plant disease responses mediated by JA. The study also provides new insights that CaMBP may play a critical role in the cross talk of multiple signaling pathways in the context of plant defense processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Botrytis/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión a Calmodulina/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Ácido Salicílico/metabolismo
10.
Commun Biol ; 2: 302, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428690

RESUMEN

General Control Non-derepressible 2 (GCN2) is an evolutionarily conserved serine/threonine kinase that modulates amino acid homeostasis in response to nutrient deprivation in yeast, human and other eukaryotes. However, the GCN2 signaling pathway in plants remains largely unknown. Here, we demonstrate that in Arabidopsis, bacterial infection activates AtGCN2-mediated phosphorylation of eIF2α and promotes TBF1 translational derepression. Consequently, TBF1 regulates a subset of abscisic acid signaling components to modulate pre-invasive immunity. We show that GCN2 fine-tunes abscisic acid accumulation and signaling during both pre-invasive and post-invasive stages of an infection event. Finally, we also demonstrate that AtGCN2 participates in signaling triggered by phytotoxin coronatine secreted by P. syringae. During the preinvasive phase, AtGCN2 regulates stomatal immunity by affecting pathogen-triggered stomatal closure and coronatine-mediated stomatal reopening. Our conclusions support a conserved role of GCN2 in various forms of immune responses across kingdoms, highlighting GCN2's importance in studies on both plant and mammalian immunology.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Enfermedades de las Plantas/microbiología , Estomas de Plantas/enzimología , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Arabidopsis/inmunología , Arabidopsis/microbiología , Factor 2 Eucariótico de Iniciación/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Homeostasis , Interacciones Huésped-Patógeno , Fosforilación , Enfermedades de las Plantas/inmunología , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Pseudomonas syringae/inmunología , Transducción de Señal
11.
Nat Plants ; 5(7): 742-754, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235876

RESUMEN

Cell fate in eukaryotes is controlled by mitogen-activated protein kinases (MAPKs) that translate external cues into cellular responses. In plants, two MAPKs-MPK3 and MPK6-regulate diverse processes of development, environmental response and immunity. However, the mechanism that bridges these shared signalling components with a specific target remains unresolved. Focusing on the development of stomata-epidermal valves that are essential for gas exchange and transpiration-here, we report that the basic helix-loop-helix protein SCREAM functions as a scaffold that recruits MPK3/6 to downregulate SPEECHLESS, a transcription factor that initiates stomatal cell lineages. SCREAM directly binds to MPK3/6 through an evolutionarily conserved, yet unconventional, bipartite motif. Mutations in this motif abrogate association, phosphorylation and degradation of SCREAM, unmask hidden non-redundancies between MPK3 and MPK6, and result in uncontrolled stomatal differentiation. Structural analyses of MPK6 with a resolution of 2.75 Å showed bipartite binding of SCREAM to MPK6 that is distinct from an upstream MAPKK. Our findings elucidate, at the atomic resolution, the mechanism that directly links extrinsic signals to transcriptional reprogramming during the establishment of stomatal cell fate, and highlight a unique substrate-binding mode adopted by plant MAPKs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estomas de Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Unión Proteica , Transducción de Señal
12.
Plant Signal Behav ; 14(7): 1604017, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30983545

RESUMEN

The MAPK signaling cascade is universal among eukaryotes and mediates a variety of environmental and developmental responses. Two Arabidopsis MAPKs, MPK3 and MPK6, have been shown to be activated by various stimuli and suggested as a convergence point of different signaling pathways. It is known that these MAPKs, MPK3/MPK6, control the discrete stages of stomatal development in Arabidopsis, but how they are regulated and how the same MAPK components can achieve signaling specificity is largely unknown. We recently demonstrated that MAP Kinase Phosphatase 1 (MKP1) promotes stomatal differentiation by suppressing activation of MPK3/MPK6 in the stomatal lineage. By expressing MKP1 in discrete stomatal precursor cell types, we further identified that MKP1 plays an important role at the early stage of stomatal development for the cell fate transition leading to stomatal differentiation. While MKP1 was previously known as a key regulator of environmental stress responses, our data illustrate a novel role of MKP1 in plant development: it acts as one of the specificity-determining regulators of MAPK signaling to enforce proper stomatal development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/crecimiento & desarrollo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Arabidopsis/genética , Ecotipo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Estomas de Plantas/genética , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
13.
Plant Sci ; 276: 220-228, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30348322

RESUMEN

The U-Box E3 ubiquitin ligase, AtPUB46, functions in the drought response: T-DNA insertion mutants of this single paralogous gene are hypersensitive to water- and oxidative stress (Adler et al. BMC Plant Biology 17:8, 2017). Here we analyze the phenotype of AtPUB46 overexpressing (OE) plants. AtPUB46-OE show increased tolerance to water stress and have smaller leaf blades and reduced stomatal pore area and stomatal index compared with wild type (WT). Despite this, the rate of water loss from detached rosettes is similar in AtPUB46-OE and WT plants. Germination of AtPUB46-OE seeds was less sensitive to salt than WT whereas seedling greening was more sensitive. We observed a complex response to oxidative stress applied by different agents: AtPUB46-OE plants were hypersensitive to H2O2 but hyposensitive to methyl viologen. AtPUB46-GFP fusion protein is cytoplasmic, however, in response to H2O2 a considerable proportion translocates to the nucleus. We conclude that the differential stress phenotype of the AtPUB46-OE does not result from its smaller leaf size but from a change in the activity of a stress pathway(s) regulated by a degradation substrate of the AtPUB46 E3 and also from a reduction in stomatal pore size and index.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Peróxido de Hidrógeno/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Citoplasma/enzimología , Deshidratación , Sequías , Genes Reporteros , Germinación , Estrés Oxidativo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Proteínas Recombinantes de Fusión , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
14.
Plant Physiol ; 178(2): 838-849, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30104254

RESUMEN

Stomatal opening is stimulated by red and blue light. Blue light activates plasma membrane (PM) H+-ATPase by phosphorylating its penultimate residue, threonine, via a blue light photoreceptor phototropin-mediated signaling pathway in guard cells. Blue light-activated PM H+-ATPase promotes the accumulation of osmolytes and, thus, the osmotic influx of water into guard cells, driving stomatal opening. Red light-induced stomatal opening is thought to be dependent on photosynthesis in both guard cell chloroplasts and mesophyll cells; however, how red light induces stomatal opening and whether PM H+-ATPase is involved in this process have remained unclear. In this study, we established an immunohistochemical technique to detect the phosphorylation level of PM H+-ATPase in guard cells using whole leaves of Arabidopsis (Arabidopsis thaliana) and unexpectedly found that red light induces PM H+-ATPase phosphorylation in whole leaves. Red light-induced PM H+-ATPase phosphorylation in whole leaves was correlated with stomatal opening under red light and was inhibited by the plant hormone abscisic acid. In aha1-9, a knockout mutant of one of the major isoforms of PM H+-ATPase in guard cells, red light-dependent stomatal opening was delayed in whole leaves. Furthermore, the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibited red light-induced PM H+-ATPase phosphorylation as well as red light-induced stomatal opening in whole leaves. Our results indicate that red light-induced PM H+-ATPase phosphorylation in guard cells promotes stomatal opening in whole leaves, providing insight into the photosynthetic regulation of stomatal opening.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Membrana Celular/enzimología , Membrana Celular/efectos de la radiación , Cloroplastos/metabolismo , Transporte de Electrón , Luz , Células del Mesófilo/metabolismo , Fosforilación , Fotosíntesis , Fototropinas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación
15.
Development ; 145(14)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29945871

RESUMEN

All multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our understanding of MAPK activities during plant asymmetric cell divisions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Brachypodium/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Estomas de Plantas/enzimología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brachypodium/citología , Brachypodium/genética , Quinasas Quinasa Quinasa PAM/genética , Estomas de Plantas/citología , Estomas de Plantas/genética , Especificidad de la Especie
16.
Plant Signal Behav ; 12(6): e1338227, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28617153

RESUMEN

Pectin is an important cell wall polysaccharide required for cellular adhesion, extension, and plant growth. The pectic methylesterification status of guard cell walls influences the movement of stomata in response to different stimuli. Pectin methylesterase (PME) has a profound effect on cell wall modification, especially on the degree of pectic methylesterification during heat response. The Arabidopsis thaliana PME34 gene is highly expressed in guard cells and in response to the phytohormone abscisic acid. The genetic data highlighted the significant role of PME34 in heat tolerance through the regulation of stomatal movement. Thus, the opening and closure of stomata is mediated by changes in response to a given stimulus, could require a specific cell wall modifying enzyme to function properly.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Calor , Estomas de Plantas/citología , Estomas de Plantas/enzimología , Pared Celular/metabolismo , Respuesta al Choque Térmico , Modelos Biológicos , Estomas de Plantas/fisiología
17.
Biochem J ; 474(15): 2585-2599, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28642254

RESUMEN

Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates. The in vitro activity of BnSnRK2.4-1C requires the presence of manganese (Mn2+). Phosphorylation sites of autophosphorylated BnSnRK2.4-1C were mapped, including serine and threonine residues in the activation loop. In vitro BnSnRK2.4-1C autophosphorylation activity was inhibited by oxidants such as H2O2 and recovered by active thioredoxin isoforms, indicating redox regulation of BnSnRK2.4-1C. Thiol-specific isotope tagging followed by mass spectrometry analysis revealed specific cysteine residues responsive to oxidant treatments. The in vivo activity of BnSnRK2.4-1C is inhibited by 15 min of H2O2 treatment. Taken together, these data indicate that BnSnRK2.4-1C, an SnRK preferentially expressed in guard cells, is redox-regulated with potential roles in guard cell signal transduction.


Asunto(s)
Brassica napus/citología , Brassica napus/enzimología , Productos Agrícolas/citología , Productos Agrícolas/enzimología , Estomas de Plantas/citología , Estomas de Plantas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica napus/efectos de los fármacos , Productos Agrícolas/efectos de los fármacos , Cisteína/metabolismo , Peróxido de Hidrógeno/farmacología , Manganeso/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Filogenia , Estomas de Plantas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Alineación de Secuencia , Tiorredoxinas/metabolismo
19.
Environ Pollut ; 227: 380-388, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28482318

RESUMEN

To evaluate the ozone (O3) sensitivity among peach tree (Prunus persica) cultivars widely planted in Beijing region and explore the possible eco-physiological response mechanisms, thirteen cultivars of peach seedlings were exposed to either charcoal-filtered air or elevated O3 (E-O3, non-filtered ambient air plus 60 ppb) for one growing season in open-top chambers. Leaf structure, stomatal structure, gas exchange and chlorophyll a fluorescence, photosynthetic pigments, antioxidant defense system and lipid peroxidation were measured in three replicated chambers. Results showed that E-O3 significantly reduced abaxial epidemis thickness, but no effects on the thicknesses of adaxial epidemis, palisade parenchyma and spongy parenchyma. Stomatal area, density and conductance were not significantly affected by E-O3. E-O3 significantly accelerated leaf senescence, as indicated by increased lipid peroxidation and more declines in light-saturated photosynthetic rate and pigments contents. The reduced ascorbate content (ASC) was decreased but antioxidant enzyme activity (CAT, APX and SOD) and total antioxidant capacity (TAC) were significantly increased by E-O3 among cultivars. The cultivars with visible symptoms also had more reductions in net photosynthetic rate than those without visible symptoms. Ozone sensitivity among cultivars was strongly linked to leaf mass per area (LMA), antioxidant enzymes activity e.g. SOD, APX rather than stomatal parameters (stomatal area, density and conductance) and ASC. Results could provide a theoretical basis for selecting and breeding the ozone-resistant cultivars of peach trees grown in high O3-polluted regions.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ozono/toxicidad , Estomas de Plantas/fisiología , Prunus persica/fisiología , Plantones/fisiología , Beijing , Clorofila/metabolismo , Clorofila A , Fluorescencia , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/enzimología , Estaciones del Año
20.
Physiol Plant ; 160(4): 383-395, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28417466

RESUMEN

Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), an NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the roles of key photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO2 assimilation of GSNO-sprayed plants under water deficit were evaluated. Sugarcane plants were sprayed with water or GSNO 100 µM and subjected to water deficit, by adding polyethylene glycol (PEG-8000) to the nutrient solution. Sugarcane plants supplied with GSNO presented increases in the activity of antioxidant enzymes such as superoxide dismutase in leaves and catalase in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As a consequence, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit.


Asunto(s)
Donantes de Óxido Nítrico/farmacología , Fosfoenolpiruvato Carboxilasa/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/efectos de los fármacos , S-Nitrosoglutatión/farmacología , Saccharum/efectos de los fármacos , Antioxidantes/metabolismo , Catalasa/metabolismo , Deshidratación , Oxidación-Reducción , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Saccharum/enzimología , Saccharum/fisiología , Superóxido Dismutasa/metabolismo , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...