Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.070
1.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Article En | MEDLINE | ID: mdl-38652378

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Metal Nanoparticles , Plants, Edible , Plants, Medicinal , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Plants, Medicinal/chemistry , Silver/chemistry , Plants, Edible/chemistry , Limit of Detection , Phytochemicals/analysis , Phytochemicals/chemistry , Reproducibility of Results , Alkaloids/analysis
2.
Food Funct ; 15(9): 4703-4723, 2024 May 07.
Article En | MEDLINE | ID: mdl-38606510

Sea buckthorn (Hippophae L.), a well-known medicinal and edible plant, is known as the "king of VC". Due to its excellent medicinal and nutritional value, it has been developed into a variety of functional products. Sea buckthorn polysaccharides (SPs), one of the important and representative active components, have attracted the attention of researchers in the fields of health food and medicine because of their potential beneficial effects on human health. Recently, SPs have shown various biological activities in in vitro and in vivo studies, such as anti-obesity, immunomodulatory, anti-tumor, antioxidant, anti-inflammatory, anti-fatigue, and hepatoprotective activities. This review provides a comprehensive and systematic summary of the extraction and purification methods, structural characterization, biological activity, and market trends of SPs to provide a theoretical basis for their therapeutic potential and sanitarian functions. A future scope is needed to further explore the medicinal and nutritional value of SPs and incorporate them in functional food products.


Hippophae , Plant Extracts , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Hippophae/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Animals , Functional Food
3.
Food Chem ; 449: 139227, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38599108

Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.


Metabolomics , Plants, Edible/chemistry , Plants, Edible/metabolism , Plants, Edible/genetics , Food Analysis , Food Handling , Plants/metabolism , Plants/chemistry , Plants/classification
4.
Food Chem ; 427: 136677, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37390739

Wild edible plants (WEP) are part of the Mediterranean culinary culture and can be used as famine foods in times of severe food shortages. Urospermum picroides is a WEP that grows under harsh conditions and represents an opportunity to expand and diversify the global food supply. However, little is known about its chemical profile. In this study, liquid chromatography coupled to HRESIMS allowed the identification of 77 metabolites in U. picroides extract, among which 12 sesquiterpene-amino acid conjugates are reported here for the first time. Due to the novelty of these conjugates, GNPS molecular networking was used to provide information on their fragmentation pathway. Further, the sesquiterpene enriched U. picroides extract showed a moderate anti-inflammatory effect in LPS-stimulated THP1-macrophages by increasing IL-10 secretion while decreasing pro-inflammatory IL-6 secretion at 50 µg/mL. Our study provides evidence for the potential use of U. picroides as an anti-inflammatory functional food and nutraceutical agent.


Asteraceae , Sesquiterpenes , Functional Food , Asteraceae/chemistry , Plants, Edible/chemistry , Plant Extracts/chemistry , Anti-Inflammatory Agents
5.
Molecules ; 28(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36903300

Approximately 110 types of medicinal materials are listed in the Chinese Pharmacopoeia, both for medicinal purposes and for use as food. There are several domestic scholars who have carried out research on edible plant medicine in China and the results are satisfactory. Though these related articles have appeared in domestic magazines and journals, many of them are yet to be translated into English. Most of the research stays in the extraction and quantitative testing stage, and there are a few medicinal and edible plants that are still under in-depth study. A majority of these edible and herbal plants are also highly enriched in polysaccharides, and this has an effect on immune systems for the prevention of cancer, inflammation, and infection. Comparing the polysaccharide composition of medicinal and edible plants, the monosaccharide and polysaccharide species were identified. It is found that different polysaccharides of different sizes have different pharmacological properties, with some polysaccharides containing special monosaccharides. The pharmacological properties of polysaccharides can be summarized as immunomodulatory, antitumor, anti-inflammatory, antihypertensive and anti-hyperlipemic, antioxidant, and antimicrobial properties. There have been no poisonous effects found in studies of plant polysaccharides, probably because the substances have a long history of use and are safe. In this paper, the application potential of polysaccharides in medicinal and edible plants in Xinjiang was reviewed, and the research progress in the extraction, separation, identification, and pharmacology of these plant polysaccharides was reviewed. At present, the research progress of plant polysaccharides in medicines and food in Xinjiang has not been reported. This paper will provide a data summary for the development and utilization of medical and food plant resources in Xinjiang.


Plants, Edible , Plants, Medicinal , Polysaccharides , China , Food , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Polysaccharides/pharmacology
6.
Molecules ; 27(21)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36364110

Phenolic acids (PAs) are one of the utmost prevalent classes of plant-derived bioactive chemicals. They have a specific taste and odor, and are found in numerous medicinal and food plants, such as Cynomorium coccineum L., Prunus domestica (L.), and Vitis vinifera L. Their biosynthesis, physical and chemical characteristics and structure-activity relationship are well understood. These phytochemicals and their derivatives exert several bioactivities including but not limited to anticancer, cardioprotective, anti-inflammatory, immune-regulatory and anti-obesity properties. They are strong antioxidants because of hydroxyl groups which play pivotal role in their anticancer, anti-inflammatory and cardioprotective potential. They may play significant role in improving human health owing to anticarcinogenic, anti-arthritis, antihypertensive, anti-stroke, and anti-atherosclerosis activities, as several PAs have demonstrated biological activities against these disease during in vitro and in vivo studies. These PAs exhibited anticancer action by promoting apoptosis, targeting angiogenesis, and reducing abnormal cell growth, while anti-inflammatory activity was attributed to reducing proinflammatory cytokines. Pas exhibited anti-atherosclerotic activity via inhibition of platelets. Moreover, they also reduced cardiovascular complications such as myocardial infarction and stroke by activating Paraoxonase 1. The present review focuses on the plant sources, structure activity relationship, anticancer, anti-inflammatory and cardioprotective actions of PAs that is attributed to modulation of oxidative stress and signal transduction pathways, along with highlighting their mechanism of actions in disease conditions. Further, preclinical and clinical studies must be carried out to evaluate the mechanism of action and drug targets of PAs to understand their therapeutic actions and disease therapy in humans, respectively.


Anti-Inflammatory Agents , Antioxidants , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Hydroxybenzoates/pharmacology , Plants, Edible/chemistry
7.
Article En | MEDLINE | ID: mdl-35682401

Globally, several hundred thousand hectares of both agricultural and urban land have become contaminated with per- and polyfluoroalkyl substances (PFAS). PFAS compounds are resistant to degradation and are mobile in soil compared to other common contaminants. Many compounds have KD values (matrix/solution concentration quotients) of <10. PFAS compounds endanger the health of humans and ecosystems by leaching into groundwater, exposure via dust, and, to a lesser extent, through plant uptake. This review aims to determine the feasibility of phytomanagement, the use of plants, and the use of soil conditioners to minimize environmental risk whilst also providing an economic return in the management of PFAS-contaminated land. For most sites, PFAS combinations render phytoextraction, the use of plants to remove PFAS from soil, inviable. In contrast, low Bioaccumulation Coefficients (BAC; plant and soil concentration quotients) timber species or native vegetation may be usefully employed for phytomanagement to limit human/food chain exposure to PFAS. Even with a low BAC, PFAS uptake by crop plants may still exceed food safety standards, and therefore, edible crop plants should be avoided. Despite this limitation, phytomanagement may be the only economically viable option to manage most of this land. Plant species and soil amendments should be chosen with the goal of reducing water flux through the soil, as well as increasing the hydrophobic components in soil that may bind the C-F-dominated tails of PFAS compounds. Soil conditioners such as biochar, with significant hydrophobic components, may mitigate the leaching of PFAS into receiving waters. Future work should focus on the interactions of PFAS with soil microbiota; secondary metabolites such as glomalin may immobilize PFAS in soil.


Fluorocarbons , Soil Pollutants , Water Pollutants, Chemical , Ecosystem , Fluorocarbons/analysis , Humans , Plants, Edible/chemistry , Plants, Edible/metabolism , Soil/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
8.
PLoS One ; 17(2): e0264147, 2022.
Article En | MEDLINE | ID: mdl-35176111

Understanding local knowledge about wild edible plants (WEP) is essential for assessing plant services, reducing the risks of knowledge extinction, recognizing the rights of local communities, and improving biodiversity conservation efforts. However, the knowledge of specific groups such as women or children tends to be under-represented in local ecological knowledge (LEK) research. In this study, we explore how knowledge of WEP is distributed across gender and life stages (adults/children) among Betsileo people in the southern highlands of Madagascar. Using data from free listings with 42 adults and 40 children, gender-balanced, we show that knowledge on WEP differs widely across gender and life stage. In addition, we find that children have extended knowledge of WEP while reporting different species than adults. Women's knowledge specializes in herbaceous species (versus other plant life forms), while men's knowledge specializes in endemic species (versus native or introduced). Finally, we find that introduced species are more frequently cited by children, while adults cite more endemic species. We discuss the LEK differentiation mechanisms and the implications of acquiring life stage's knowledge in the highland landscapes of Madagascar. Given our findings, we highlight the importance of considering groups with under-represented knowledge repositories, such as children and women, into future research.


Asian People/statistics & numerical data , Biodiversity , Ethnobotany , Health Knowledge, Attitudes, Practice , Plants, Edible/chemistry , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Madagascar , Male , Young Adult
9.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35054793

Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.


Blood Platelets/metabolism , Plants, Edible/chemistry , Animals , Clinical Trials as Topic , Fungi/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platelet Function Tests
10.
J Sci Food Agric ; 102(2): 472-487, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34462916

Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 µmol m-2  s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Flowers/chemistry , Plant Leaves/chemistry , Plants, Edible/metabolism , Plants, Medicinal/metabolism , Vegetables/radiation effects , Carotenoids/chemistry , Carotenoids/metabolism , Crop Production/instrumentation , Crop Production/methods , Flowers/growth & development , Flowers/metabolism , Flowers/radiation effects , Light , Phenols/chemistry , Phenols/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plants, Edible/chemistry , Plants, Edible/growth & development , Plants, Edible/radiation effects , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/radiation effects , Vegetables/chemistry , Vegetables/growth & development , Vegetables/metabolism
11.
Biomed Chromatogr ; 36(1): e5229, 2022 Jan.
Article En | MEDLINE | ID: mdl-34414593

Phenthoate is a chiral organophosphate pesticide with a pair of enantiomers which differ in toxicity, behavior and insecticidal activity, and its acute toxicity on human health owing to the inhibition of acetylcholinesterase highlights the need for enantioselective detection of enantiomers. Therefore, this study aimed to establish a simple rapid method for separation and detection of phenthoate enantiomers in fruits, vegetables and grains. The enantiomers were separated using reversed-phase high-performance liquid chromatography-tandem mass spectrometry for the first time. Rapid chiral separation (within 9 min) of the target compound was achieved on a chiral OJ-RH column with the mobile phase of methanol-water = 85:15(v/v), at a flow rate of 1 ml/min and a column temperature of 30°C. Acetonitrile and graphitized carbon black were used as the extractant and sorbent for pretreatment, respectively. This method provides excellent linearity (correlation coefficient ≥0.9986), high sensitivity (limit of quantification 5 µg/kg and limit of detection <0.25 µg/kg), satisfactory mean recoveries (76.2-91.0%) and relative standard deviation (intra-day RSDs ranged from 2.0 to 7.9% and inter-day RSDs ranged from 2.4 to 8.4%). In addition, a field trial to explore the stereoselective degradation of phenthoate enantiomers in citrus showed that (-)-phenthoate degraded faster than its antipode, resulting in the relative accumulation of (+)-phenthoate.


Chromatography, Reverse-Phase/methods , Organothiophosphorus Compounds , Pesticide Residues , Plants, Edible/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Limit of Detection , Linear Models , Organothiophosphorus Compounds/analysis , Organothiophosphorus Compounds/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry , Reproducibility of Results , Stereoisomerism
12.
Int J Biol Macromol ; 195: 102-116, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34896461

Although the increasing studies have corroborated the biological activities and great market utilization value of polysaccharide fractions derived from Polygonati rhizome, a well-known edible and medicinal plant, Polygonati rhizome polysaccharides (PRPs) still lack sufficient attention. Herein, we make attempt to systematically summarize recent advances in the extraction, purification, structural characteristics, biological activities, and commercial products of PRPs. Based on the detailed extraction and structural characteristics, the biological activities of PRPs including immune-regulation, anti-osteoporosis, anti-Alzheimer's disease, anti-diabetes and anti-atherosclerotic, are emphatically summarized, as well as the possible related mechanisms. Most importantly, about 365 kinds of commercial functional foods and over 500 patents related to PRPs as the main raw material were analyzed to explore the status quo and bottleneck for the development and utilization of PRPs. In conclusion, this review will benefit to bridge the gap between basic knowledge and market innovations, and facilitate the in-depth utilization of PRPs.


Drugs, Chinese Herbal/chemistry , Functional Food , Polygonatum/chemistry , Polysaccharides/chemistry , Drug Discovery , Drugs, Chinese Herbal/pharmacology , Plants, Edible/chemistry , Polysaccharides/pharmacology , Rhizome/chemistry
13.
Food Chem Toxicol ; 159 Suppl 1: 112707, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34848252

The existing information supports the use of this material as described in this safety assessment. ß-Caryophyllene was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Data show that ß-caryophyllene is not genotoxic. Data on ß-caryophyllene provided a calculated Margin of Exposure (MOE) > 100 for the repeated dose toxicity and fertility endpoints. The developmental and local respiratory toxicity endpoints were evaluated using the Threshold of Toxicological Concern (TTC) for a Cramer Class I material, and the exposure to ß-caryophyllene is below the TTC (0.03 mg/kg/day and 1.4 mg/day, respectively. Data show that there are no safety concerns for ß-caryophyllene for skin sensitization under the current declared levels of use. The phototoxicity/photoallergenicity endpoints were evaluated based on data and ultraviolet/visible (UV/Vis) spectra; ß-caryophyllene is not expected to be phototoxic/photoallergenic. The environmental endpoints were evaluated; ß-caryophyllene was found not to be Persistent, Bioaccumulative, and Toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.


Environmental Exposure/adverse effects , Odorants/analysis , Perfume/toxicity , Plants, Edible/chemistry , Polycyclic Sesquiterpenes/toxicity , Safety , Academies and Institutes/standards , Animals , Dermatitis, Photoallergic , Dermatitis, Phototoxic , Endpoint Determination , Europe , Fertility/drug effects , Humans , Mutagenicity Tests , North America , Perfume/chemistry , Polycyclic Sesquiterpenes/analysis , Quantitative Structure-Activity Relationship , Registries , Reproduction/drug effects , Respiratory System/drug effects , Risk Assessment , Skin/drug effects , Toxicity Tests
14.
Molecules ; 26(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34885744

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Antifungal Agents/chemistry , Biological Products/chemistry , Mycoses/drug therapy , Polyphenols/chemistry , Amomum/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Brassica/chemistry , Cinnamomum zeylanicum/chemistry , Coriandrum/chemistry , Lactuca/chemistry , Mentha piperita/chemistry , Mycoses/microbiology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology , Trigonella/chemistry
15.
Molecules ; 26(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34885754

Chalcones are secondary metabolites belonging to the flavonoid (C6-C3-C6 system) family that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids. Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic pathway. Plants containing chalcones have been used in traditional medicines since antiquity. Chalcones are basically α,ß-unsaturated ketones that exert great diversity in pharmacological activities such as antioxidant, anticancer, antimicrobial, antiviral, antitubercular, antiplasmodial, antileishmanial, immunosuppressive, anti-inflammatory, and so on. This review provides an insight into the chemistry, biosynthesis, and occurrence of chalcones from natural sources, particularly dietary and medicinal plants. Furthermore, the pharmacological, pharmacokinetics, and toxicological aspects of naturally occurring chalcone derivatives are also discussed herein. In view of having tremendous pharmacological potential, chalcone scaffolds/chalcone derivatives and bioflavonoids after subtle chemical modification could serve as a reliable platform for natural products-based drug discovery toward promising drug lead molecules/drug candidates.


Chalcone/metabolism , Flavonoids/chemistry , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Chalcone/chemistry , Chalcone/pharmacokinetics , Chalcone/therapeutic use , Flavonoids/biosynthesis , Flavonoids/pharmacokinetics , Flavonoids/therapeutic use , Humans , Tissue Scaffolds/chemistry
16.
Biol Pharm Bull ; 44(12): 1894-1897, 2021.
Article En | MEDLINE | ID: mdl-34853274

The lusitropic effect of quercetin was examined on isolated ventricular myocardial tissue preparations from normal and streptozotocin-induced diabetic mice. The time required for 90% relaxation of the myocardium, which was prolonged in the diabetic mice, was shortened by quercetin in both normal and diabetic myocardia. This effect of quercetin was completely inhibited by cyclopiazonic acid but not by SEA0400. These results indicated that quercetin accelerates myocardial relaxation through activation of the sarco-endoplasmic reticulum Ca2+-ATPase.


Diabetes Mellitus, Experimental/physiopathology , Heart Ventricles/physiopathology , Myocardial Contraction/drug effects , Myocardium , Plant Extracts/pharmacology , Quercetin/pharmacology , Ventricular Dysfunction, Left/etiology , Adenosine Triphosphatases/metabolism , Aniline Compounds/pharmacology , Animals , Calcium/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Endoplasmic Reticulum , Enzyme Inhibitors , Heart Ventricles/metabolism , Indoles/pharmacology , Male , Mice , Myocardium/metabolism , Myocardium/pathology , Phenyl Ethers/pharmacology , Plant Extracts/therapeutic use , Plants, Edible/chemistry , Quercetin/therapeutic use , Reference Values , Ventricular Pressure
17.
Molecules ; 26(22)2021 Nov 17.
Article En | MEDLINE | ID: mdl-34834031

Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.


Antioxidants/chemistry , Flavonoids/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Plants, Edible/chemistry , Humans
18.
Nutrients ; 13(10)2021 Oct 16.
Article En | MEDLINE | ID: mdl-34684628

Phytochemicals contribute to the health benefits of plant-rich diets, notably through their antioxidant and anti-inflammatory effects. However, recommended daily amounts of the main dietary phytochemicals remain undetermined. We aimed to estimate the amounts of phytochemicals in a well-balanced diet. A modelled diet was created, containing dietary reference intakes for adults in France. Two one-week menus (summer and winter) were devised to reflect typical intakes of plant-based foods. Existing databases were used to estimate daily phytochemical content for seven phytochemical families: phenolic acids, flavonoids (except anthocyanins), anthocyanins, tannins, organosulfur compounds, carotenoids, and caffeine. The summer and winter menus provided 1607 and 1441 mg/day, respectively, of total polyphenols (phenolic acids, flavonoids, anthocyanins, and tannins), the difference being driven by reduced anthocyanin intake in winter. Phenolic acids, flavonoids (including anthocyanins), and tannins accounted for approximately 50%, 25%, and 25% of total polyphenols, respectively. Dietary carotenoid and organosulfur compound content was estimated to be approximately 17 and 70 mg/day, respectively, in both seasons. Finally, both menus provided approximately 110 mg/day of caffeine, exclusively from tea and coffee. Our work supports ongoing efforts to define phytochemical insufficiency states that may occur in individuals with unbalanced diets and related disease risk factors.


Diet/methods , Phytochemicals/administration & dosage , Phytochemicals/analysis , Adult , Anthocyanins/analysis , Antioxidants/analysis , Caffeine/analysis , Carotenoids/analysis , Diet, Mediterranean , Flavonoids/analysis , France , Humans , Hydroxybenzoates/analysis , Plants, Edible/chemistry , Polyphenols/analysis , Sulfur Compounds/analysis , Tannins/analysis
19.
Molecules ; 26(17)2021 Sep 04.
Article En | MEDLINE | ID: mdl-34500813

Aromatic halophytes represent an exceptional source of natural bioactive compounds for the food industry. Crithmum maritimum L., also known as sea fennel, is a halophyte plant colonizing cliffs and coastal dunes along Mediterranean and Atlantic coasts. It is well known to produce essential oils and polyphenols endowed with antioxidant and biological effects. The present work reports the phytochemical profile, as well as antioxidant, antimicrobial and antimutagenic properties of C. maritimum leaf hydro-alcoholic extract. From LC-ESI-MS analysis, eighteen phenolic compounds were depicted in sea fennel extract and the amount of total phenolic content exceeds 3% DW. Accordingly, C. maritimum extract showed strong antioxidant activities, as evidenced by in vitro (DPPH, ORAC, FRAP) and ex vivo (CAA-RBC and hemolysis) assays. An important antimicrobial activity against pathogenic strains was found as well as a strong capacity to inhibit Staphylococcus aureus (ATCC 35556) biofilm formation. Sea fennel extracts showed a significant decrease of mutagenesis induced by hydrogen peroxide (H2O2) and menadione (ME) in Saccharomyces cerevisiae D7 strain. In conclusion, our results show that C. maritimum is an exceptional source of bioactive components and exert beneficial effects against oxidative or mutagenic mechanisms, and pathogenic bacteria, making it a potential functional food.


Dietary Supplements , Magnoliopsida/chemistry , Plant Extracts/chemistry , Plants, Edible/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimutagenic Agents/chemistry , Antimutagenic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Salt-Tolerant Plants/chemistry , Staphylococcus aureus/drug effects
20.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article En | MEDLINE | ID: mdl-34360856

Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.


Food Security/methods , Plants, Edible/genetics , Plants, Edible/metabolism , Gene Editing , Genomics/methods , Humans , Metabolomics , Plants, Edible/chemistry , Proteomics
...