Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.229
1.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732182

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Anthocyanins , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Fruit/metabolism , Fruit/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , RNA Interference
2.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640682

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Biodegradation, Environmental , Cadmium , Nicotiana , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Plants, Genetically Modified/metabolism
3.
J Agric Food Chem ; 72(18): 10506-10520, 2024 May 08.
Article En | MEDLINE | ID: mdl-38651833

Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.


Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Saccharum , Saccharum/genetics , Saccharum/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Ustilaginales/genetics , Calcium Signaling/drug effects , Disease Resistance/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Plant Physiol Biochem ; 210: 108607, 2024 May.
Article En | MEDLINE | ID: mdl-38593486

Grafting in tomato (Solanum lycopersicum L.) has mainly been used to prevent damage by soil-borne pathogens and the negative effects of abiotic stresses, although productivity and fruit quality can also be enhanced using high vigor rootstocks. In the context of a low nutrients input agriculture, the grafting of elite cultivars onto rootstocks displaying higher Nitrogen Use Efficiency (NUE) supports a direct strategy for yield maximization. In this study we assessed the use of plants overexpressing the Arabidopsis (AtCDF3) or tomato (SlCDF3) CDF3 genes, previously reported to increase NUE in tomato, as rootstocks to improve yield in the grafted scion under low N inputs. We found that the AtCDF3 gene induced greater production of sugars and amino acids, which allowed for greater biomass and fruit yield under both sufficient and limiting N supplies. Conversely, no positive impact was found with the SlCDF3 gene. Hormone analyses suggest that gibberellins (GA4), auxin and cytokinins (tZ) might be involved in the AtCDF3 responses to N. The differential responses triggered by the two genes could be related, at least in part, to the mobility of the AtCDF3 transcript through the phloem to the shoot. Consistently, a higher expression of the target genes of the transcription factor, such as glutamine synthase 2 (SlGS2) and GA oxidase 3 (SlGA3ox), involved in amino acid and gibberellin biosynthesis, respectively, was observed in the leaves of this graft combination. Altogether, our results provided further insights into the mode of action of CDF3 genes and their biotechnology potential for transgrafting approaches.


Arabidopsis Proteins , Arabidopsis , Carbon , Nitrogen , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Nitrogen/metabolism , Carbon/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
5.
Plant Physiol Biochem ; 210: 108611, 2024 May.
Article En | MEDLINE | ID: mdl-38615439

A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.


Abscisic Acid , Anthocyanins , Blueberry Plants , Gene Expression Regulation, Plant , Plant Proteins , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Abscisic Acid/metabolism , Blueberry Plants/genetics , Blueberry Plants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Plants, Genetically Modified/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Fruit/metabolism , Fruit/genetics
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674051

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Oryza , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Oryza/metabolism , Oryza/genetics , Oryza/virology , Polysaccharides/metabolism , Glycosylation , Humans , SARS-CoV-2/metabolism , Protein Domains , Protein Binding , Plants, Genetically Modified/metabolism , COVID-19/virology , COVID-19/metabolism
7.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622266

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
8.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1029-1039, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658146

This study aimed to visualize the morphological features and dynamic changes of tomato mitochondria to provide a basis for the study of its mitochondrial functions. In this study, transgenic tomatoes expressing mitochondria-localized green fluorescent protein (mitochondria-GFP, Mt-GFP) were obtained by Agrobacterium-mediated genetic transformation. The color, hardness, soluble solids, acidity content, respiration rate, and ethylene production of the transgenic Mt-GFP tomato fruits were determined at the stage of mature green, breaker, and 3, 6, 9 days after breaker, while the wild-type tomato fruits were used as a control. As expected, Mt-GFP recombinant protein did not affect the ripening process, but induced the increased acidity of tomato fruits. The accumulations of Mt-GFP protein in tomato leaves and fruits were successfully verified by Western blotting. The morphological characteristics of mitochondria in flower, leaf and fruit cells as well as the dynamic changes of mitochondria in flower cells were clearly observed and studied under confocal laser microscope. The development of transgenic Mt-GFP tomato plants helps the visualization of tomato mitochondria and provides good research materials for the study of mitochondrial function during tomato development and fruit ripening.


Green Fluorescent Proteins , Mitochondria , Mitochondrial Dynamics , Plants, Genetically Modified , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Mitochondria/metabolism , Mitochondria/genetics , Fruit/metabolism , Fruit/genetics
9.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594617

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Bacillus thuringiensis , Moths , Pesticides , Animals , Larva/genetics , Larva/metabolism , Glycine max/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Moths/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Chromosomes/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Insecticide Resistance/genetics
10.
Physiol Plant ; 176(2): e14240, 2024.
Article En | MEDLINE | ID: mdl-38561015

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Arabidopsis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Droughts , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
11.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38564429

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Arabidopsis , Arabidopsis/genetics , Drought Resistance , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Droughts , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
12.
Physiol Plant ; 176(2): e14272, 2024.
Article En | MEDLINE | ID: mdl-38566275

The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.


Cold-Shock Response , Fabaceae , Cold-Shock Response/genetics , Antioxidants , Plant Proteins/metabolism , Transcription Factors/metabolism , Fabaceae/genetics , Stress, Physiological/genetics , Seedlings/genetics , Seedlings/metabolism , Nicotiana/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant/genetics , Cold Temperature
13.
BMC Plant Biol ; 24(1): 246, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38575869

BACKGROUND: Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS: The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION: The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.


Arabidopsis , Arabidopsis/metabolism , Drought Resistance , Zea mays/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Stress, Physiological/genetics
14.
Funct Plant Biol ; 512024 Apr.
Article En | MEDLINE | ID: mdl-38640358

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Arabidopsis , Arabidopsis/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Fructose/metabolism , Photosynthesis/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
15.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38631255

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Arabidopsis , Camellia sinensis , Homeostasis , Plant Proteins , Plant Roots , Plants, Genetically Modified , Zinc , Zinc/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Camellia sinensis/metabolism , Camellia sinensis/genetics , Gene Expression Regulation, Plant , Biodegradation, Environmental , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
16.
Plant Physiol Biochem ; 210: 108564, 2024 May.
Article En | MEDLINE | ID: mdl-38555719

Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.


Copper , Oryza , Plant Proteins , Oryza/metabolism , Oryza/genetics , Copper/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Lignin/metabolism , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant/drug effects , Cell Wall/metabolism
17.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472660

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Bridged-Ring Compounds , Nicotiana , Taxoids , Animals , Spodoptera , Taxoids/metabolism , Taxoids/pharmacology , Paclitaxel/pharmacology , Plants, Genetically Modified/metabolism , Larva
18.
Mol Plant Pathol ; 25(3): e13439, 2024 Mar.
Article En | MEDLINE | ID: mdl-38483039

Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.


Ascomycota , Magnaporthe , Oryza , Humans , Mitophagy , Autophagy/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plants, Genetically Modified/metabolism , Oryza/microbiology , Plant Diseases/microbiology
19.
Nat Commun ; 15(1): 2559, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519521

Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.


Magnaporthe , Oryza , Host-Pathogen Interactions , Plant Immunity/genetics , Biological Transport , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
20.
Planta ; 259(4): 78, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427069

MAIN CONCLUSION: The Arabidopsis Pentatricopeptide repeat 40 (PPR40) insertion mutants have increased tolerance to water deficit compared to wild-type plants. Tolerance is likely the consequence of ABA hypersensitivity of the mutants. Plant growth and development depend on multiple environmental factors whose alterations can disrupt plant homeostasis and trigger complex molecular and physiological responses. Water deficit is one of the factors which can seriously restrict plant growth and viability. Mitochondria play an important role in cellular metabolism, energy production, and redox homeostasis. During drought and salinity stress, mitochondrial dysfunction can lead to ROS overproduction and oxidative stress, affecting plant growth and survival. Alternative oxidases (AOXs) and stabilization of mitochondrial electron transport chain help mitigate ROS damage. The mitochondrial Pentatricopeptide repeat 40 (PPR40) protein was implicated in stress regulation as ppr40 mutants were found to be hypersensitive to ABA and high salinity during germination. This study investigated the tolerance of the knockout ppr40-1 and knockdown ppr40-2 mutants to water deprivation. Our results show that these mutants display an enhanced tolerance to water deficit. The mutants had higher relative water content, reduced level of oxidative damage, and better photosynthetic parameters in water-limited conditions compared to wild-type plants. ppr40 mutants had considerable differences in metabolic profiles and expression of a number of stress-related genes, suggesting important metabolic reprogramming. Tolerance to water deficit was also manifested in higher survival rates and alleviated growth reduction when watering was suspended. Enhanced sensitivity to ABA and fast stomata closure was suggested to lead to improved capacity for water conservation in such environment. Overall, this study highlights the importance of mitochondrial functions and in particular PPR40 in plant responses to abiotic stress, particularly drought.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Water/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Stress, Physiological/genetics , Mutation , Gene Expression Regulation, Plant , Droughts , Plants, Genetically Modified/metabolism
...