Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 109(3): 598-614, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775642

RESUMEN

Pollen tube integrity, growth and guidance are crucial factors in plant sexual reproduction. Members of the plant Skewed5 (SKU5) Similar (SKS) family show strong similarity to multicopper oxidases (MCOs), but they lack conserved histidines in MCO active sites. The functions of most SKS family members are unknown. Here, we show that Arabidopsis pollen-expressed SKS11 and SKS12 play important roles in pollen tube integrity, growth and guidance. The sks11sks12 mutant exhibited significantly reduced male fertility. Most of the pollen from sks11sks12 plants burst when germinated, and the pollen tubes grew slowly and exhibited defective growth along the funiculus and micropyle. SKS11-GFP and SKS12-mCherry were detected at the cell wall in pollen tubes. The contents of several cell wall polysaccharides and arabinogalactans were decreased in the pollen tube cell walls of sks11sks12 plants. Staining with a reactive oxygen species (ROS)-sensitive dye and use of the H2 O2 sensor HyPer revealed that the ROS content in the pollen tubes of sks11sks12 plants was remarkably reduced. SKS11444His-Ala , in which the last conserved histidine was mutated, could restore the mutant phenotypes of sks11sks12. Thus, SKS11/12 are required for pollen tube integrity, growth and guidance possibly by regulating the ROS level and cell wall polysaccharide deposition or remodeling in pollen tubes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glicoproteínas de Membrana/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fenotipo
2.
Biomolecules ; 11(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201466

RESUMEN

Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.


Asunto(s)
Camellia sinensis/genética , Frío , MicroARNs/genética , Óxido Nítrico/farmacología , Tubo Polínico/genética , Análisis de Secuencia de ARN/métodos , Camellia sinensis/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , MicroARNs/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo
3.
Protein J ; 40(2): 205-222, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751342

RESUMEN

Pollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identify Nicotiana tabacum Differentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC-ESI-MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


Asunto(s)
Moduladores del Transporte de Membrana/farmacología , Tubo Polínico , Proteoma , Brefeldino A/farmacología , Lactamas/farmacología , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tubo Polínico/química , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Proteoma/análisis , Proteoma/química , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Nicotiana/metabolismo , Wortmanina/farmacología
4.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650624

RESUMEN

Although cell wall dynamics, particularly modification of homogalacturonan (HGA, a major component of pectin) during pollen tube growth, have been extensively studied in dicot plants, little is known about how modification of the pollen tube cell wall regulates growth in monocot plants. In this study, we assessed the role of HGA modification during elongation of the rice pollen tube by adding a pectin methylesterase (PME) enzyme or a PME-inhibiting catechin extract (Polyphenon 60) to in vitro germination medium. Both treatments led to a severe decrease in the pollen germination rate and elongation. Furthermore, using monoclonal antibodies toward methyl-esterified and de-esterified HGA epitopes, it was found that exogenous treatment of PME and Polyphenon 60 resulted in the disruption of the distribution patterns of low- and high-methylesterified pectins upon pollen germination and during pollen tube elongation. Eleven PMEs and 13 PME inhibitors (PMEIs) were identified by publicly available transcriptome datasets and their specific expression was validated by qRT-PCR. Enzyme activity assays and subcellular localization using a heterologous expression system in tobacco leaves demonstrated that some of the pollen-specific PMEs and PMEIs possessed distinct enzymatic activities and targeted either the cell wall or other compartments. Taken together, our findings are the first line of evidence showing the essentiality of HGA methyl-esterification status during the germination and elongation of pollen tubes in rice, which is primarily governed by the fine-tuning of PME and PMEI activities.


Asunto(s)
Oryza/genética , Pectinas/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Germinación/genética , Oryza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Tubo Polínico/efectos de los fármacos , Polifenoles/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
5.
Plant Physiol ; 183(4): 1559-1585, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482906

RESUMEN

Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.


Asunto(s)
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/efectos de los fármacos , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
6.
Methods Mol Biol ; 2160: 257-273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529443

RESUMEN

Pollen tubes growing in the transmitting tract are presented with an extracellular matrix rich in a variety of substances. The expression of a multitude of genes for transport proteins in the pollen tube indicates that pollen tubes take up at least some of the components provided by the transmitting tract, for example nutrients, ions, or signaling molecules. FRET (Förster resonance energy transfer)-based nanosensors are perfectly suited to study the uptake of these molecules into pollen tubes. They are genetically encoded and can easily be expressed in Arabidopsis pollen tubes. Furthermore, the method is noninvasive and nanosensors for a wide range of substances are available. This chapter will describe the design of plasmids required to generate stable Arabidopsis lines with a pollen tube-specific expression of nanosensor constructs. We also present a method to germinate Arabidopsis pollen tubes in a flow chamber slide that allows the perfusion of the pollen tubes with liquid medium supplemented with the substrate of the nanosensor. Simultaneous evaluation of the FRET efficiency of the nanosensor by confocal microscopy reveals whether the substance is taken up by the pollen tubes. Together with the great number of available nanosensors this method can generate a detailed picture of the substances that are taken up during pollen tubes growth.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Tubo Polínico/fisiología , Arabidopsis , Técnicas Biosensibles/instrumentación , Medios de Cultivo/química , Medios de Cultivo/farmacología , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Tubo Polínico/citología , Tubo Polínico/efectos de los fármacos
7.
Methods Mol Biol ; 2160: 307-325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529446

RESUMEN

The general role of cellular membranes is to provide a barrier and to generate separate reaction spaces. However, additional functions of membrane domains enriched in certain classes of lipids have been discovered, which represent an important area of ongoing research. Such membrane domains can be found in cells at different size scales (e.g., nanodomains, microdomains), represent membrane regions with special physical properties and play important roles in the direct or indirect propagation of signaling processes. Domain formation within the plasma membrane (PM) does not only involve the accumulation of specific lipids, but also the recruitment of specific transmembrane or PM-associated peripheral proteins. Phosphatidic acid (PA) is increasingly recognized as an important signaling lipid and component of PM domains. This lipid is involved in the regulation not only of biotic or abiotic stress responses, but also of pollen tube tip growth and of other forms of polar cell expansion. Although many PA-binding proteins have been characterized, a conserved PA interaction motif could not be identified in these proteins. Consequently, protein binding to PA cannot be predicted based on sequence analysis, but has to be biochemically tested using lipid strip or liposome assays. Although these assays are often informative, they are generally based on the use of artificial model membranes, which compared to natural membranes contain fewer lipid types often at non-physiological concentrations. In this chapter, we describe an alternative in vivo assay that can be employed to analyze protein binding to PA at the PM of normally elongating tobacco pollen tubes. This assay is based on the use of n-butanol (n-ButOH), which inhibits phospholipase D (PLD) and thereby blocks a major biosynthetic pathway that generates PA within the PM from substrates like phosphatidylcholine (PC) or phosphatidylethanolamine (PE). PLD inhibition reduces the PA content of the PM and consequently the level of PM association of PA-binding proteins, which can be analyzed using fluorescence microscopy. Methods enabling n-ButOH treatment of cultured tobacco pollen tubes expressing YFP-tagged PA-binding proteins as well as the quantitative determination of the PM association of these proteins are described.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Fosfatidicos/metabolismo , Tubo Polínico/metabolismo , Arabidopsis , Butanoles/farmacología , Microscopía Confocal/métodos , Tubo Polínico/efectos de los fármacos , Unión Proteica
8.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321844

RESUMEN

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Asunto(s)
Papaver/fisiología , Proteínas de Plantas/metabolismo , Polen/fisiología , Autoincompatibilidad en las Plantas con Flores/fisiología , Actinas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Peróxido de Hidrógeno/toxicidad , Pirofosfatasa Inorgánica/metabolismo , Nitrosación , Oxidación-Reducción , Papaver/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/química , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos , Solubilidad
9.
J Hazard Mater ; 393: 122380, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32126426

RESUMEN

Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was germinated in-vitro with and without 1-100 µg mL-1 few-layer graphene (FLG), GO and reduced GO (rGO) to identify GRMs effects alternative to the acidification damage caused by GO. At 100 µg mL-1 both FLG and GO decreased pollen germination, however only GO negatively affected pollen tube growth. Furthermore, GO adsorbed about 10 % of the initial Ca2+ from germination media accounting for a further decrease in germination of 13 % at the pH created by GO. In addition, both FLG and GO altered the normal tip-focused reactive oxygen species (ROS) distribution along the pollen tube. The results provided here help to understand GRMs effect on the sexual reproduction of seed plants and to address future in-vivo studies.


Asunto(s)
Corylus/efectos de los fármacos , Grafito/toxicidad , Reproducción/efectos de los fármacos , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Flores/efectos de los fármacos , Concentración de Iones de Hidrógeno , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
10.
Plant J ; 103(2): 617-633, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32215973

RESUMEN

Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new ß-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Tubo Polínico/fisiología , Poligalacturonasa/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Tubo Polínico/efectos de los fármacos , Poligalacturonasa/genética , Poligalacturonasa/farmacología , Saccharomycetales
11.
J Integr Plant Biol ; 62(8): 1093-1111, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32009278

RESUMEN

Brassinosteroids (BRs) play important roles in regulating plant reproductive processes. BR signaling or BR biosynthesis null mutants do not produce seeds under natural conditions, but the molecular mechanism underlying this infertility is poorly understood. In this study, we report that outer integument growth and embryo sac development were impaired in the ovules of the Arabidopsis thaliana BR receptor null mutant bri1-116. Gene expression and RNA-seq analyses showed that the expression of INNER NO OUTER (INO), an essential regulator of outer integument growth, was significantly reduced in the bri1-116 mutant. Increased INO expression due to overexpression or increased transcriptional activity of BRASSINAZOLE-RESISTANT 1 (BZR1) in the mutant alleviated the outer integument growth defect in bri1-116 ovules, suggesting that BRs regulate outer integument growth partially via BZR1-mediated transcriptional regulation of INO. Meanwhile, INO expression in bzr-h, a null mutant for all BZR1 family genes, was barely detectable; and the outer integument of bzr-h ovules had much more severe growth defects than those of the bri1-116 mutant. Together, our findings establish a new role for BRs in regulating ovule development and suggest that BZR1 family transcription factors might regulate outer integument growth through both BRI1-dependent and BRI1-independent pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Brasinoesteroides/farmacología , Proteínas de Unión al ADN/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Recuento de Células , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Óvulo Vegetal/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Polinización/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/metabolismo
12.
Protoplasma ; 257(1): 89-101, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31342152

RESUMEN

The aim of the current study was to examine the effect of different exogenous putrescine concentrations (200, 400, 600, and 800 µM) on the tea pollen performance. It was shown that putrescine has a dose-dependent effect on pollen performance. Results exhibited that pollen germination and tube elongation were induced by 200 and 400 µM putrescine treatment, especially, 400 µM putrescine-enhanced pollen performance. However, pollen performance was inhibited by higher concentrations of putrescine. Putrescine concentrations above 400 µM changed the actin filament distribution in pollen tubes by affecting the distribution of sucrose synthase enzyme. Alterations of the distribution on sucrose synthase enzyme also caused the alterations in the dispersion of cellulose and callose in the cell wall, and morphological alterations such as balloon-shaped and snake-shaped pollen tube tip accompanied them. Moreover, putrescine concentrations above 400 µM caused a decrease of ROS level in apex and led to chromatin condensation of the generative nucleus. In conclusion, exogenous putrescine application can be used as a pollen performance enhancer at low concentrations while the high concentrations cause adverse effects reducing fertilization success.


Asunto(s)
Actinas/metabolismo , Camellia sinensis/citología , Camellia sinensis/crecimiento & desarrollo , Pared Celular/metabolismo , Tubo Polínico/crecimiento & desarrollo , Putrescina/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Camellia sinensis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Pared Celular/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
Protoplasma ; 257(1): 213-227, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31410589

RESUMEN

Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.


Asunto(s)
Aminoácidos Cíclicos/biosíntesis , Ácido Aminooxiacético/farmacología , Apoptosis/efectos de los fármacos , Petunia/citología , Petunia/fisiología , Tubo Polínico/citología , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Petunia/efectos de los fármacos , Petunia/ultraestructura , Tubo Polínico/efectos de los fármacos , Tubo Polínico/ultraestructura , Ribonucleasas/metabolismo
14.
New Phytol ; 223(3): 1353-1371, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31132313

RESUMEN

We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+ ]cyt ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents. AtCCC-GFP was observed at the shank and AtSLAH3-GFP at the tip and shank of the PT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip of PTs with an anion vibrating probe were significantly lower in slah3-/- and ccc-/- mutants, but unaffected in almt12-/- and tmem16-/- . We further characterised the effect of pH and GABA by patch clamp. Strong regulation by extracellular pH was observed in the wild-type, but not in tmem16-/- . Our results are compatible with AtTMEM16 functioning as an anion/H+ cotransporter and therefore, as a putative pH sensor. GABA presence: (1) inhibited the overall currents, an effect that is abrogated in the almt12-/- and (2) reduced the current in AtALMT12 transfected COS-7 cells, strongly suggesting the direct interaction of GABA with AtALMT12. Our data show that AtSLAH3 and AtCCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linking PT growth modulation by pH, GABA, and [Ca2+ ]cyt through anionic transporters.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , Fenómenos Electrofisiológicos , Polen/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aniones , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cloruros/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Transporte Iónico/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Nitratos/farmacología , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Simportadores/metabolismo
15.
BMC Plant Biol ; 19(1): 152, 2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31010418

RESUMEN

BACKGROUND: During sexual reproduction, pollen grains land on the stigma, rehydrate and produce pollen tubes that grow through the female transmitting-tract tissue allowing the delivery of the two sperm cells to the ovule and the production of healthy seeds. Because pollen tubes are single cells that expand by tip-polarized growth, they represent a good model to study the growth dynamics, cell wall deposition and intracellular machineries. Aiming to understand this complex machinery, we used a low throughput chemical screen approach in order to isolate new tip-growth disruptors. The effect of a chemical inhibitor of monogalactosyldiacylglycerol synthases, galvestine-1, was also investigated. The present work further characterizes their effects on the tip-growth and intracellular dynamics of pollen tubes. RESULTS: Two small compounds among 258 were isolated based on their abilities to perturb pollen tube growth. They were found to disrupt in vitro pollen tube growth of tobacco, tomato and Arabidopsis thaliana. We show that these 3 compounds induced abnormal phenotypes (bulging and/or enlarged pollen tubes) and reduced pollen tube length in a dose dependent manner. Pollen germination was significantly reduced after treatment with the two compounds isolated from the screen. They also affected cell wall material deposition in pollen tubes. The compounds decreased anion superoxide accumulation, disorganized actin filaments and RIC4 dynamics suggesting that they may affect vesicular trafficking at the pollen tube tip. CONCLUSION: These molecules may alter directly or indirectly ROP1 activity, a key regulator of pollen tube growth and vesicular trafficking and therefore represent good tools to further study cellular dynamics during polarized-cell growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Germinación/efectos de los fármacos , Conformación Molecular , Tubo Polínico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Superóxidos/metabolismo
16.
Plant Signal Behav ; 13(11): e1529521, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30307369

RESUMEN

Plant reproduction is the basis for economically relevant food production. It relies on pollen tube (PTs) growth into the female flower organs for successful fertilization. The high cytosolic Ca2+ concentration ([Ca2+]cyt) at the PT tip is sensed by Ca2+-dependent protein kinases (CPKs) that in turn activate R- and S-type anion channels to control polar growth. Lanthanum, a blocker for plant Ca2+-permeable channels was used here to demonstrate a strict dependency for anion channel activation through high PT tip [Ca2+]cyt. We visualized this relationship by live-cell anion imaging and concurrent triggering of Ca2+-elevations with the two-electrode voltage-clamp (TEVC) technique. The anion efflux provoked by a TEVC-triggered [Ca2+]cyt increase was abolished by Lanthanum and was followed by an overall rise in the cytosolic anion concentration. An interrelation between Ca2+ and anion homeostasis occurred also on the transcript level of CPKs and anion channels. qRT-PCR analysis demonstrated a co-regulation of anion channels and CPKs in media with different Cl- and NO3- compositions. Our data provides strong evidence for the importance of a Ca2+-dependent anion channel regulation and point to a synchronized adjustment of CPK and anion channel transcript levels to fine-tune anion efflux at the PT tip.


Asunto(s)
Aniones/metabolismo , Calcio/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Lantano/farmacología , Tubo Polínico/efectos de los fármacos
17.
Plant Physiol ; 177(1): 255-270, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29581178

RESUMEN

For successful fertilization in angiosperms, rapid tip growth in pollen tubes delivers the male gamete into the ovules. The actin-binding protein-mediated organization of the actin cytoskeleton within the pollen tube plays a crucial role in this polarized process. However, the mechanism underlying the polarity of the actin filament (F-actin) array and behaviors in pollen tube growth remain largely unknown. Here, we demonstrate that an actin-organizing protein, Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), controls pollen tube growth by modulating the polarity and distribution of the F-actin array. The rice rmd mutant exhibits abnormal pollen tube growth and a decreased germination rate of the pollen grain in vitro and in vivo. The rmd pollen tubes display a disorganized F-actin pattern with disrupted apical actin density and shank longitudinal cable direction/arrangement, indicating the novel role of RMD in F-actin polarity during tip growth. Consistent with this role, RMD localizes at the tip of the rice pollen tube, which is essential for pollen tube growth and polarity as well as F-actin organization. Furthermore, the direction and characteristics of the RMD-guided F-actin array positively regulate the deposition of cell wall components and the pattern and velocity of cytoplasmic streaming during rice pollen tube growth. Collectively, our results suggest that RMD is essential for the spatial regulation of pollen tube growth via modulating F-actin organization and array orientation in rice. This work provides insights into tip-focused cell growth and polarity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Citoesqueleto de Actina/ultraestructura , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Polaridad Celular , Pared Celular/metabolismo , Pared Celular/ultraestructura , Regulación de la Expresión Génica de las Plantas , Germinación , Mutación , Oryza/citología , Pectinas/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Tubo Polínico/citología , Tubo Polínico/efectos de los fármacos , Tiazolidinas/farmacología
18.
Protoplasma ; 255(3): 819-828, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29204720

RESUMEN

Pollen development and germination were adversely affected by the presence of mercury, whereas low-concentrations stimulated the whole procedure. Mercury caused morphological anomalies during the tube growth, characterized by irregularly increasing diameters and swelling tips. The main effect was the anomalous cell wall formation at the tip where a substantial number of organelles were found reducing the secretory vesicles. The dense organelle concentration caused a significant reduction of cytoplasmic movement integrity, and the cytosol streaming was gradually reduced or stopped completely. Electron dense, multilamellar myelin-like structures (MMS) of membranous material were frequently present, in close contact with plasmalemma or away from it. A loose network of fibrillar material and spherical aggregates mostly at the tip region were observed which progressively were loosened into the surrounding medium. Elevated mercury concentrations can affect plant reproduction, resulting in anomalies in gamete development and consequently loss of plant biodiversity.


Asunto(s)
Germinación/efectos de los fármacos , Lilium/crecimiento & desarrollo , Mercurio/toxicidad , Tubo Polínico/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Lilium/efectos de los fármacos , Membranas/efectos de los fármacos , Tubo Polínico/anatomía & histología , Tubo Polínico/efectos de los fármacos , Tubo Polínico/ultraestructura
19.
Plant Reprod ; 31(2): 159-169, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29236154

RESUMEN

KEY MESSAGE: In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca2+]cyt) gradient and the actin cytoskeleton. This [Ca2+]cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca2+]cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca2+]cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca2+ homeostasis, evaluating how the [Ca2+]cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant PIIA-type Ca2+-ATPases, increased [Ca2+]cyt in the subapical zone, leading to the disappearance of the Ca2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca2+]cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca2+]cyt, both inhibited pollen tube growth triggering the disappearance of the [Ca2+]cyt gradient. When CPA and 2-APB were combined, their individual inhibitory effects on pollen tube growth were partially compensated. Finally, we found that GsMTx-4, a peptide from spider venom that blocks stretch-activated Ca2+ channels, inhibited tomato pollen germination and had a heterogeneous effect on pollen tube growth, suggesting that these channels are also involved in the maintenance of the [Ca2+]cyt gradient. All these results indicate that tomato pollen tube is an excellent model to study calcium dynamics.


Asunto(s)
ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Luminiscentes/metabolismo , Tubo Polínico/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Solanum lycopersicum/metabolismo , Compuestos de Boro/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Indoles/farmacología , Péptidos y Proteínas de Señalización Intercelular , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Péptidos/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Venenos de Araña/farmacología
20.
Plant Cell ; 29(12): 3140-3156, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29150546

RESUMEN

Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Proteínas Quinasas/metabolismo , Alarminas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/efectos de los fármacos , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Luciferasas/metabolismo , Mutación/genética , Inmunidad de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Receptores de Reconocimiento de Patrones/metabolismo , Reproducción/efectos de los fármacos , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...