Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Genome Biol ; 20(1): 189, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481099

RESUMEN

BACKGROUND: Polyadenylation plays a key role in producing mature mRNAs in eukaryotes. It is widely believed that the poly(A)-binding proteins (PABs) uniformly bind to poly(A)-tailed mRNAs, regulating their stability and translational efficiency. RESULTS: We observe that the homozygous triple mutant of broadly expressed Arabidopsis thaliana PABs, AtPAB2, AtPAB4, and AtPAB8, is embryonic lethal. To understand the molecular basis, we characterize the RNA-binding landscape of these PABs. The AtPAB-binding efficiency varies over one order of magnitude among genes. To identify the sequences accounting for the variation, we perform poly(A)-seq that directly sequences the full-length poly(A) tails. More than 10% of poly(A) tails contain at least one guanosine (G); among them, the G-content varies from 0.8 to 28%. These guanosines frequently divide poly(A) tails into interspersed A-tracts and therefore cause the variation in the AtPAB-binding efficiency among genes. Ribo-seq and genome-wide RNA stability assays show that AtPAB-binding efficiency of a gene is positively correlated with translational efficiency rather than mRNA stability. Consistently, genes with stronger AtPAB binding exhibit a greater reduction in translational efficiency when AtPAB is depleted. CONCLUSIONS: Our study provides a new mechanism that translational efficiency of a gene can be regulated through the G-content-dependent PAB binding, paving the way for a better understanding of poly(A) tail-associated regulation of gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Composición de Base , Genes de Plantas , Guanosina/análisis , Proteína II de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/metabolismo , Proteína II de Unión a Poli(A)/fisiología , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/fisiología , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 115(42): 10684-10689, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30257938

RESUMEN

The Hippo tumor-suppressor pathway regulates organ growth, cell proliferation, and stem cell biology. Defects in Hippo signaling and hyperactivation of its downstream effectors-Yorkie (Yki) in Drosophila and YAP/TAZ in mammals-result in progenitor cell expansion and overgrowth of multiple organs and contribute to cancer development. Deciphering the mechanisms that regulate the activity of the Hippo pathway is key to understanding its function and for therapeutic targeting. However, although the Hippo kinase cascade and several other upstream inputs have been identified, the mechanisms that regulate Yki/YAP/TAZ activity are still incompletely understood. To identify new regulators of Yki activity, we screened in Drosophila for suppressors of tissue overgrowth and Yki activation caused by overexpression of atypical protein kinase C (aPKC), a member of the apical cell polarity complex. In this screen, we identified mutations in the heterogeneous nuclear ribonucleoprotein Hrb27C that strongly suppressed the tissue defects induced by ectopic expression of aPKC. Hrb27C was required for aPKC-induced tissue growth and Yki target gene expression but did not affect general gene expression. Genetic and biochemical experiments showed that Hrb27C affects Yki phosphorylation. Other RNA-binding proteins known to interact with Hrb27C for mRNA transport in oocytes were also required for normal Yki activity, although they suppressed Yki output. Based on the known functions of Hrb27C, we conclude that Hrb27C-mediated control of mRNA splicing, localization, or translation is essential for coordinated activity of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas Nucleares/genética , Proteína II de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Transactivadores/genética , Proteínas Señalizadoras YAP
3.
PLoS Negl Trop Dis ; 12(7): e0006679, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30040867

RESUMEN

Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.


Asunto(s)
Proteína II de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteínas Protozoarias/metabolismo , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/genética , Unión Proteica , Proteómica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN Mensajero/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
4.
Reproduction ; 154(6): 723-733, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28871057

RESUMEN

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Espermátides/metabolismo , Espermatogénesis , Transactivadores/metabolismo , Adulto , Animales , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Estudios de Casos y Controles , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligospermia/genética , Oligospermia/metabolismo , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Proteína II de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Transactivadores/deficiencia , Transactivadores/genética , Adulto Joven
5.
Nucleic Acids Res ; 44(12): 5924-35, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27095199

RESUMEN

Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3'UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3'UTR poly(A) tail to the bound miRISC and deadenylase.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Larva/genética , MicroARNs/genética , Poli A/genética , Proteína II de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/genética , Regiones no Traducidas 3' , Adenosina Monofosfato/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Silenciador del Gen , Larva/crecimiento & desarrollo , Larva/metabolismo , MicroARNs/metabolismo , Poli A/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
6.
Mech Dev ; 136: 40-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25720531

RESUMEN

The normal expression of ß-globin protein in mature erythrocytes is critically dependent on post-transcriptional events in erythroid progenitors that ensure the high stability of ß-globin mRNA. Previous work has revealed that these regulatory processes require AUF-1 and YB-1, two RNA-binding proteins that assemble an mRNP ß-complex on the ß-globin 3'UTR. Here, we demonstrate that the ß-complex organizes during the erythropoietic interval when both ß-globin mRNA and protein accumulate rapidly, implicating the importance of this regulatory mRNP to normal erythroid differentiation. Subsequent functional analyses link ß-complex assembly to the half-life of ß-globin mRNA in vivo, providing a mechanistic basis for this regulatory activity. AUF-1 and YB-1 appear to serve a redundant post-transcriptional function, as both ß-complex assembly and ß-globin mRNA levels are reduced by coordinate depletion of the two factors, and can be restored by independent rescue with either factor alone. Additional studies demonstrate that the ß-complex assembles more efficiently on polyadenylated transcripts, implicating a model in which the ß-complex enhances the binding of PABPC1 to the poly(A) tail, inhibiting mRNA deadenylation and consequently effecting the high half-life of ß-globin transcripts in erythroid progenitors. These data specify a post-transcriptional mechanism through which AUF1 and YB1 contribute to the normal development of erythropoietic cells, as well as to non-hematopoietic tissues in which AUF1- and YB1-based regulatory mRNPs have been observed to assemble on heterologous mRNAs.


Asunto(s)
Células Eritroides/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Globinas beta/metabolismo , Regiones no Traducidas 3' , Diferenciación Celular , Línea Celular , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Globinas beta/genética
7.
PLoS One ; 8(1): e54004, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382864

RESUMEN

The number of paralogs of proteins involved in translation initiation is larger in trypanosomes than in yeasts or many metazoan and includes two poly(A) binding proteins, PABP1 and PABP2, and four eIF4E variants. In many cases, the paralogs are individually essential and are thus unlikely to have redundant functions although, as yet, distinct functions of different isoforms have not been determined. Here, trypanosome PABP1 and PABP2 have been further characterised. PABP1 and PABP2 diverged subsequent to the differentiation of the Kinetoplastae lineage, supporting the existence of specific aspects of translation initiation regulation. PABP1 and PABP2 exhibit major differences in intracellular localization and distribution on polysome fractionation under various conditions that interfere with mRNA metabolism. Most striking are differences in localization to the four known types of inducible RNP granules. Moreover, only PABP2 but not PABP1 can accumulate in the nucleus. Taken together, these observations indicate that PABP1 and PABP2 likely associate with distinct populations of mRNAs. The differences in localization to inducible RNP granules also apply to paralogs of components of the eIF4F complex: eIF4E1 showed similar localization pattern to PABP2, whereas the localisation of eIF4E4 and eIF4G3 resembled that of PABP1. The grouping of translation initiation as either colocalizing with PABP1 or with PABP2 can be used to complement interaction studies to further define the translation initiation complexes in kinetoplastids.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Evolución Molecular , Proteína I de Unión a Poli(A)/metabolismo , Trypanosoma brucei brucei/genética , Núcleo Celular/ultraestructura , Citoplasma/ultraestructura , Humanos , Filogenia , Proteína I de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/genética , Trypanosoma brucei brucei/ultraestructura
8.
Traffic ; 14(3): 282-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23279110

RESUMEN

Nuclear poly(A)-binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline-tyrosine nuclear localization signal (PY-NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin ß2 (Kapß2)-type receptors in the import of PY-NLS cargoes, we show that the fission yeast ortholog of human Kapß2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N-terminal to the PY-core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub-optimal PY-NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY-NLS cargo. Although a sequence resembling a PY-NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY-NLS nor Kapß2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY-NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.


Asunto(s)
Núcleo Celular/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Células HeLa , Humanos , Señales de Localización Nuclear , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/genética , Prolina/química , Transporte de Proteínas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Tirosina/química , beta Carioferinas/genética
9.
Nucleic Acids Res ; 40(20): 10240-53, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22965128

RESUMEN

THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mature snoRNAs. We also show physical and functional connections between THO and components of the TRAMP polyadenylation complex, whose loss of function also results in snoRNA accumulation. Consistent with a role in snoRNA expression, we demonstrate that THO and TRAMP complexes are recruited to snoRNA genes, and that a functional THO complex is required to maintain TRAMP occupancy at sites of snoRNA transcription. Our findings suggest that THO promotes exosome-mediated degradation of snoRNA precursors by ensuring the presence of the TRAMP complex at snoRNA genes. This study unveils an unexpected role for THO in the control of snoRNA expression and provides a new link between transcription and nuclear RNA decay.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Estabilidad del ARN , ARN Nucleolar Pequeño/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Eliminación de Gen , Proteínas Nucleares/genética , Proteína II de Unión a Poli(A)/metabolismo , Poliadenilación , Polinucleotido Adenililtransferasa/metabolismo , Procesamiento Postranscripcional del ARN , ARN Nucleolar Pequeño/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
10.
PLoS One ; 7(7): e41313, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844456

RESUMEN

BACKGROUND: Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol. METHODOLOGY/PRINCIPAL FINDINGS: To understand how tristetraprolin mechanistically functions, we biopanned with a phage-display library for proteins that interact with tristetraprolin and retrieved, among others, a fragment of poly(A)-binding protein nuclear 1, which assists in the 3'-polyadenylation of mRNA by binding to immature poly(A) tails and thereby increases the activity of poly(A) polymerase, which is directly responsible for polyadenylation. The tristetraprolin/poly(A)-binding protein nuclear 1 interaction was characterized using tristetraprolin and poly(A)-binding protein nuclear 1 deletion mutants in pull-down and co-immunoprecipitation assays. Tristetraprolin interacted with the carboxyl-terminal region of poly(A)-binding protein nuclear 1 via its tandem zinc finger domain and another region. Although tristetraprolin and poly(A)-binding protein nuclear 1 are located in both the cytoplasm and the nucleus, they interacted in vivo in only the nucleus. In vitro, tristetraprolin bound both poly(A)-binding protein nuclear 1 and poly(A) polymerase and thereby inhibited polyadenylation of AU-rich element-containing mRNAs encoding tumor necrosis factor α, GM-CSF, and interleukin-10. A tandem zinc finger domain-deleted tristetraprolin mutant was a less effective inhibitor. Expression of a tristetraprolin mutant restricted to the nucleus resulted in downregulation of an AU-rich element-containing tumor necrosis factor α/luciferase mRNA construct. CONCLUSION/SIGNIFICANCE: In addition to its known cytosolic mRNA-degrading function, tristetraprolin inhibits poly(A) tail synthesis by interacting with poly(A)-binding protein nuclear 1 in the nucleus to regulate expression of AU-rich element-containing mRNA.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato , Núcleo Celular/metabolismo , Poli A/biosíntesis , Proteína II de Unión a Poli(A)/metabolismo , Tristetraprolina/metabolismo , Animales , Células HEK293 , Humanos , Luciferasas/genética , Ratones , Proteína II de Unión a Poli(A)/química , Poliadenilación , Polinucleotido Adenililtransferasa/antagonistas & inhibidores , Polinucleotido Adenililtransferasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , ARN Mensajero/química , ARN Mensajero/genética , Tristetraprolina/química , Factor de Necrosis Tumoral alfa/genética
11.
J Biol Chem ; 287(27): 22662-71, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22570486

RESUMEN

Oculopharyngeal muscular dystrophy is a late-onset disease caused by an elongation of a natural 10-alanine segment within the N-terminal domain of the nuclear poly(A)-binding protein 1 (PABPN1) to maximally 17 alanines. The disease is characterized by intranuclear deposits consisting primarily of PABPN1. In previous studies, we could show that the N-terminal domain of PABPN1 forms amyloid-like fibrils. Here, we analyze fibril formation of full-length PABPN1. Unexpectedly, fibril formation was independent of the presence of the alanine segment. With regard to fibril formation kinetics and resistance against denaturants, fibrils formed by full-length PABPN1 had completely different properties from those formed by the N-terminal domain. Fourier transformed infrared spectroscopy and limited proteolysis showed that fibrillar PABPN1 has a structure that differs from native PABPN1. Circumstantial evidence is presented that the C-terminal domain is involved in fibril formation.


Asunto(s)
Distrofia Muscular Oculofaríngea/genética , Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/genética , Deficiencias en la Proteostasis/genética , Alanina/química , Amiloidosis/genética , Amiloidosis/metabolismo , Escherichia coli/genética , Humanos , Distrofia Muscular Oculofaríngea/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Espectrofotometría Infrarroja
12.
Cell ; 149(3): 538-53, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22502866

RESUMEN

Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA.


Asunto(s)
Proteína II de Unión a Poli(A)/metabolismo , Poliadenilación , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutación , Proteína II de Unión a Poli(A)/genética , Proteínas de Unión al ARN/metabolismo
13.
Cell Biol Int ; 36(8): 697-704, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22519734

RESUMEN

The PABPN1 [nuclear poly(A)-binding protein 1] is ubiquitous, binds to the nascent mRNA transcript and controls the poly(A) tract elongation process in multicellular organisms. Expansion of GCG repeats that encode first 6 of the 10 alanine residues of a polyalanine tract at the N-terminus of wild-type PABPN1 to 12-17 alanine residues causes aggregation of the protein and cell death. Patients with the adult onset autosomal dominant OPMD (oculopharyngeal muscular dystrophy) carry the GCG expansion mutation in their PABPN1 gene. The symptoms of OPMD include drooping eye lids and difficulty swallowing. The severity of symptoms increases with the length of the expansion. We have investigated the mechanism of cell death in HeLa and HEK-293 (human embryonic kidney) cultured cells expressing the mutant PABPN1 with a polyalanine tract containing 17 alanine residues (PABPN1-A17). In cells expressing PABPN1-A17, the abundance of pro-apoptotic proteins, p53, PUMA (p53 up-regulated modulator of apoptosis) and Noxa, are up-regulated. This was associated with the redistribution of p53 to the nucleus and mitochondria. Concomitantly Bax was translocated to the mitochondria, followed by the release of cytochrome c and the cleavage of caspase 3. Furthermore, blocking p53-mediated transcription using pifithrin significantly reduced apoptosis. Our findings suggest a key role of p53-mediated apoptosis in death of cells expressing the polyalanine expansion mutant of PABPN1.


Asunto(s)
Apoptosis , Péptidos/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Benzotiazoles/metabolismo , Caspasa 3/metabolismo , Citocromos c/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Mutación , Proteína II de Unión a Poli(A)/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tolueno/análogos & derivados , Tolueno/metabolismo , Regulación hacia Arriba , Proteína X Asociada a bcl-2/metabolismo
14.
PLoS One ; 6(10): e26175, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022552

RESUMEN

The 2009 pandemic H1N1 influenza virus encodes an NS1 protein with 11 amino acids (aa) truncation at the C-terminus. The C-terminal tail of influenza virus NS1 protein constitutes a nucleolar localization signal (NoLS) and is the binding domain of the cellular pre-mRNA processing protein, poly(A)-binding protein II (PABII). Here, our studies showed that the C-terminal-truncated NS1 of the 2009 pandemic virus was inefficient at blocking host gene expression, extension of the truncated NS1 to its full length increased the inhibition of host gene expression. Mechanistically, this increased inhibition of host gene expression by the full-length NS1 was not associated with nucleolar localization, but was due to the restoration of NS1's binding capacity to PABII. Furthermore, in vitro and in vivo characterization of two recombinant viruses encoding either the C-terminal 11-aa truncated or full-length NS1 of the 2009 pandemic virus showed that the C-terminal 11-aa truncation in NS1 did not significantly alter virus replication, but increased virus pathogenicity in mice.


Asunto(s)
Regulación de la Expresión Génica , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Mutación/genética , Pandemias , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/patología , Gripe Humana/virología , Espacio Intracelular/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones por Orthomyxoviridae/virología , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética/genética , Reproducibilidad de los Resultados , Sus scrofa , Transfección
15.
J Biol Chem ; 286(38): 32986-94, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21808065

RESUMEN

The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown. Part of the methylated domain serves as nuclear localization signal, binding the import receptor transportin. Here we report that arginine methylation weakens the affinity of PABPN1 for transportin. Recombinant, unmethylated PABPN1 binds more strongly to transportin than its methylated counterpart from mammalian tissue, and in vitro methylation reduces the affinity. Transportin and RNA compete for binding to PABPN1. Methylation favors RNA binding. Transportin also inhibits in vitro methylation of the protein. Finally, a peptide corresponding to the nuclear localization signal of PABPN1 competes with transportin-dependent nuclear import of the protein in a permeabilized cell assay and does so less efficiently when it is methylated. We hypothesize that transportin binding might delay methylation of PABPN1 until after nuclear import. In the nucleus, arginine methylation may favor the transition of PABPN1 to the competing ligand RNA and serve to reduce the risk of the protein being reexported to the cytoplasm by transportin.


Asunto(s)
Arginina/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Unión Competitiva , Bovinos , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Metilación , Datos de Secuencia Molecular , Señales de Localización Nuclear/metabolismo , Proteína II de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/química , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN/metabolismo , Proteínas Recombinantes/metabolismo
16.
Am J Pathol ; 179(4): 1988-2000, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854744

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in poly(A) binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. Transgene expression is induced on myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to those observed in patients with OPMD. Quantitative analysis of PABPN1 in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. We found that aggregation of expPABPN1 is more affected than WT PABPN1 by inhibition of proteasome activity. Consistent with this, in myotube cultures expressing expPABPN1, deregulation of the proteasome was identified as the most significantly perturbed pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and rate of protein turnover. This study demonstrates, for the first time to our knowledge, that, in myotubes, the ratio of soluble/insoluble expPABPN1 is significantly lower compared with that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Proteínas Mutantes/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Desmina/genética , Modelos Animales de Enfermedad , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Ratones , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Músculos/patología , Distrofia Muscular Oculofaríngea/genética , Proteínas Mutantes/química , Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/genética , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Cuaternaria de Proteína , Transducción de Señal , Solubilidad , Transcriptoma , Transfección , Expansión de Repetición de Trinucleótido/genética , Ubiquitinación
17.
Nucleus ; 2(3): 208-18, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818414

RESUMEN

Increased aggregation of misfolded proteins is associated with aging, and characterizes a number of neurodegenerative disorders caused by homopolymeric amino acid expansion mutations. PABPN1 is an aggregation-prone nuclear protein. Natural aggregation of wild-type (WT) PABPN1 is not known to be disease-associated, but alanine-expanded PABPN1 (expPABPN1) accumulates in insoluble intranuclear inclusions in muscle of patients with oculopharyngeal muscular dystrophy (OPMD). We applied microscopic image quantification to study PABPN1 aggregation process in living cells. We identified transitional pre-inclusion foci and demonstrate that these structures significantly differ between WT- and expPABPN1-expressing cells, while inclusions of these proteins are indistinguishable. In addition to the immobile PABPN1 in inclusions, in the nucleoplasm of expPABPN1 expressing cells we also found a fraction of immobile proteins, representing pre-aggregated species. We found that pre-aggregated and pre-inclusion structures are reverted by a PABPN1 specific affinity binder while inclusion structures are not. Together our results demonstrate that the aggregation process of WT- and expPABPN1 differs in steps preceding inclusion formation, suggesting that pre-aggregated protein species could represent the cytotoxic structures.


Asunto(s)
Cuerpos de Inclusión Intranucleares/metabolismo , Proteína II de Unión a Poli(A)/química , Multimerización de Proteína , Línea Celular Tumoral , Supervivencia Celular , Humanos , Cuerpos de Inclusión Intranucleares/genética , Mutación , Proteína II de Unión a Poli(A)/genética , Proteína II de Unión a Poli(A)/metabolismo , Estructura Cuaternaria de Proteína , Factores de Tiempo
18.
EMBO Mol Med ; 3(1): 35-49, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21204267

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset syndrome characterized by progressive degeneration of specific muscles. OPMD is caused by extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Insoluble nuclear inclusions form in diseased muscles. We have generated a Drosophila model of OPMD that recapitulates the features of the disorder. Here, we show that the antiprion drugs 6-aminophenanthridine (6AP) and guanabenz acetate (GA), which prevent formation of amyloid fibers by prion proteins in cell models, alleviate OPMD phenotypes in Drosophila, including muscle degeneration and nuclear inclusion formation. The large ribosomal RNA and its activity in protein folding were recently identified as a specific cellular target of 6AP and GA. We show that deletions of the ribosomal DNA locus reduce OPMD phenotypes and act synergistically with sub-effective doses of 6AP. In a complementary approach, we demonstrate that ribosomal RNA accelerates in vitro fibril formation of PABPN1 N-terminal domain. These results reveal the conserved role of ribosomal RNA in different protein aggregation disorders and identify 6AP and GA as general anti-aggregation molecules.


Asunto(s)
Guanabenzo/uso terapéutico , Distrofia Muscular Oculofaríngea/metabolismo , Fenantridinas/uso terapéutico , Proteína II de Unión a Poli(A)/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Larva/metabolismo , Distrofia Muscular Oculofaríngea/tratamiento farmacológico , Fenotipo , Enfermedades por Prión/tratamiento farmacológico , Pliegue de Proteína , ARN Ribosómico/metabolismo
19.
J Biol Chem ; 285(36): 27859-68, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20622014

RESUMEN

Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.


Asunto(s)
Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Proteína II de Unión a Poli(A)/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Exosomas/metabolismo , Eliminación de Gen , Proteína II de Unión a Poli(A)/deficiencia , Proteína II de Unión a Poli(A)/genética , ARN Mensajero/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética , Regulación hacia Arriba , Factores de Escisión y Poliadenilación de ARNm/metabolismo
20.
FEBS Lett ; 584(8): 1558-64, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20226184

RESUMEN

Oculopharyngeal muscular dystrophy is caused by small alanine expansions in polyadenylate binding protein nuclear 1 (PABPN1) protein resulting in its intranuclear accumulation in skeletal muscle. 3F5 llama antibody specifically interferes with the PABPN1 aggregation process in vitro and in vivo. To understand the structural basis for its epitope recognition we mapped the binding interface of 3F5 with PABPN1 and provide a structural model of the 3F5-PABPN1 complex. We show that 3F5 complementarity determining regions create a cavity in which PABPN1 alpha-helix domain resides by involving critical residues previously implicated in the aggregation process. These results may increase our understanding of the PABPN1 aggregation mechanism and the therapeutic potential of 3F5.


Asunto(s)
Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/inmunología , Distrofia Muscular Oculofaríngea/inmunología , Proteína II de Unión a Poli(A)/inmunología , Proteína II de Unión a Poli(A)/metabolismo , Humanos , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteína II de Unión a Poli(A)/química , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...