Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39123088

RESUMEN

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Ratas , Oxidación-Reducción/efectos de los fármacos , Desaminación , Amina Oxidasa (conteniendo Cobre)/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliamino Oxidasa , Putrescina/metabolismo , Putrescina/farmacología , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/química , Sistema Libre de Células , Hígado/metabolismo , Hígado/efectos de los fármacos , Poliaminas/metabolismo , Espermina/metabolismo , Espermina/farmacología , Espermidina/metabolismo , Masculino , Nitrógeno/metabolismo , Ratas Wistar
2.
Clin Res Hepatol Gastroenterol ; 48(7): 102421, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002816

RESUMEN

BACKGROUND: Spermine oxidase (SMOX), an inducible enzyme involved in the catabolic pathway of polyamine, was found to be upregulated in hepatocellular carcinoma and might be an important oncogene of it in our previous studies. This study attempted to further investigate its relationship with liver inflammation and fibrosis both in vitro and in vivo. METHODS: The effect of SMOX inhibition on LPS-induced inflammatory response in mouse liver cell line AML12 was validated by using small interfering RNA or SMOX inhibitor MDL72527. Western blotting and immunofluorescence were utilized to verify whether LPS could induce ß-catenin to transfer into the nucleus and whether it could be reversed by interfering with the expression of SMOX or using SMOX inhibitor. Then, the SMOX inhibitor MDL72527 and SMOX knockout mice were used to verify the hypothesis above in vivo. RESULTS: The expression of SMOX could be induced by LPS in AML12 cells. The inhibition of SMOX could inhibit LPS-induced inflammatory response in AML12 cells. LPS could induce ß-catenin transfer from cytoplasm to nucleus, while SMOX downregulation or inhibition could partially reverse this process. In vivo intervention with SMOX inhibitor MDL72527 or SMOX knockout mice could significantly improve the damage of liver function, reduce intrahepatic inflammation, inhibit the nuclear transfer of ß-catenin in liver tissue, and alleviate carbon tetrachloride-induced liver fibrosis in mice. CONCLUSION: SMOX can promote the inflammatory response and fibrosis of hepatocytes. It provides a new therapeutic strategy for hepatitis and liver fibrosis, inhibiting early liver cancer.


Asunto(s)
Cirrosis Hepática , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliamino Oxidasa , beta Catenina , Animales , Masculino , Ratones , beta Catenina/metabolismo , Hepatitis/etiología , Hepatitis/metabolismo , Lipopolisacáridos , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Putrescina/análogos & derivados , Transducción de Señal
3.
Adv Sci (Weinh) ; 11(29): e2306912, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38775007

RESUMEN

Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.


Asunto(s)
Proteína 5 Relacionada con la Autofagia , Autofagia , Fibrosis , Riñón , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliamino Oxidasa , Espermina , Animales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Ratones , Autofagia/fisiología , Fibrosis/metabolismo , Espermina/metabolismo , Espermina/farmacología , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Senescencia Celular/fisiología , Senescencia Celular/genética
4.
Plant J ; 119(2): 960-981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761363

RESUMEN

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Poliamino Oxidasa , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas Modificadas Genéticamente , Desarrollo de la Planta/genética , Poliaminas/metabolismo , Espermina/análogos & derivados
5.
Biomolecules ; 13(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136670

RESUMEN

Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.


Asunto(s)
Nanopartículas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliamino Oxidasa , Espermina/metabolismo , Electricidad Estática , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Nanopartículas/química
6.
Genes (Basel) ; 14(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38002968

RESUMEN

Polyamines play an important role in developmental and environmental stress responses in plants. Polyamine oxidases (PAOs) are flavin-adenine-dinucleotide-dependent enzymes associated with polyamine catabolism. In this study, 14 genes were identified in the tobacco genome that code for PAO proteins being named based on their sequence homology with Arabidopsis PAOs (AtPAO1-5): NtPAO1A-B; NtPAO2A-C, NtPAO4A-D, and NtPAO5A-E. Sequence analysis confirmed that the PAO gene family of the allopolyploid hybrid Nicotiana tabacum is not an exact combination of the PAO genes of the maternal Nicotiana sylvestris and paternal Nicotiana tomentosiformis ones. The loss of the N. sylvestris homeolog of NtPAO5E and the gain of an extra NtPAO2 copy, likely of Nicotiana othophora origin, was revealed. The latter adds to the few pieces of evidence suggesting that the paternal parent of N. tabacum was an introgressed hybrid of N. tomentosiformis and N. othophora. Gene expression analysis indicated that all 14 PAO genes kept their expression following the formation of the hybrid species. The homeologous gene pairs showed similar or opposite regulation depending on the investigated organ, applied stress, or hormone treatment. The data indicate that the expression pattern of the homeologous genes is diversifying in a process of subfunctionalization.


Asunto(s)
Nicotiana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Nicotiana/genética , Nicotiana/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas/metabolismo , Poliaminas , Poliamino Oxidasa
7.
Biomolecules ; 13(9)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37759783

RESUMEN

Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Acetiltransferasas/genética , Proteína Quinasa CDC2 , Ciclooxigenasa 2 , Indometacina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Oxidorreductasas , Receptores Activados del Proliferador del Peroxisoma , Poliamino Oxidasa , Nucleolina
8.
Immun Inflamm Dis ; 11(4): e824, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102659

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a traumatic central nervous system disorder that leads to irreversible neurological dysfunction. Emerging evidence has shown that differentially expressed circular RNAs (circRNAs) after SCI is closely associated with the pathophysiological process. Herein, the potential function of circRNA spermine oxidase (circSmox) in functional recovery after SCI was investigated. METHODS: Differentiated PC12 cells stimulated with lipopolysaccharide (LPS) were employed as an in vitro model for neurotoxicity research. Levels of genes and proteins were detected by quantitative real-time PCR and Western blot analysis. Cell viability and apoptosis were determined by CCK-8 assay and flow cytometry. Western blot analysis was used to detect the protein level of apoptosis-related markers. The levels of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Dual-luciferase reporter, RIP, and pull-down assays were used to confirm the target relationship between miR-340-5p and circSmox or Smurf1 (SMAD Specific E3 Ubiquitin Protein Ligase 1). RESULTS: LPS elevated the levels of circSmox and Smurf1, but decreased the levels of miR-340-5p in PC12 cells in a dose-dependent manner. Functionally, circSmox silencing alleviated LPS-induced apoptosis and inflammation in PC12 cells in vitro. Mechanistically, circSmox directly sponged miR-340-5p, which targeted Smurf1. Rescue experiments showed that miR-340-5p inhibition attenuated the neuroprotective effect of circSmox siRNA in PC12 cells. Moreover, miR-340-5p suppressed LPS-triggered neurotoxicity in PC12 cells, which was reversed by Smurf1 overexpression. CONCLUSION: CircSmox enhances LPS-induced apoptosis and inflammation via miR-340-5p/Smurf1 axis, providing an exciting view of the potential involvement of circSmox in SCI pathogenesis.


Asunto(s)
MicroARNs , Traumatismos de la Médula Espinal , Animales , Ratas , Apoptosis/genética , Inflamación/genética , Lipopolisacáridos/toxicidad , MicroARNs/genética , Células PC12 , Traumatismos de la Médula Espinal/genética , Ubiquitina-Proteína Ligasas/genética , Poliamino Oxidasa
9.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768644

RESUMEN

Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidrolasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Genes Reporteros , Poliamino Oxidasa
10.
J Appl Genet ; 64(1): 65-70, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36178587

RESUMEN

Powdery mildew (PM), a common cereal disease in cultivated areas, including Europe and other temperate regions, is caused by the fungus Blumeria graminis. While PM is one of the most important wheat leaf diseases globally, rye is highly tolerant to PM. It has been reported that in barley infected with PM, polyamine oxidase (PAO) activity related to the production of hydrogen peroxide (H2O2) has increased, which may promote defense against biotrophic or hemibiotrophic pathogens. The current study aimed to assess the relationship between the segregation of the polymorphic marker for rye PAO (ScPAO) and the level of PM infection in plants. The genetic mapping in two interline populations shows that ScPAO is located on chromosome 7R. Further analysis comparing ScPAO location to mapped wheat (Triticum aestivum L.) PAO duplicates suggests the ScPAO homology with TaPAO6 or TaPAO7. A possible association of ScPAO from 7R with PM resistance is demonstrated in the recombinant inbred lines (RIL)-L population phenotyped for PM infection. Finally, three novel QTLs for PM resistance on the 7R chromosome of rye are detected.


Asunto(s)
Peróxido de Hidrógeno , Secale , Secale/genética , Mapeo Cromosómico , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Poliamino Oxidasa
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077395

RESUMEN

Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the 'Zunla-1' pepper genome (named CaPAO1-CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.


Asunto(s)
Arabidopsis , Capsicum , Arabidopsis/genética , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Fitomejoramiento , Espermina , Poliamino Oxidasa
12.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142401

RESUMEN

Polyamine oxidase (PAOX) (N1-acetylpolyamine oxidase) is a major enzyme in the polyamine catabolism pathway that generates hydrogen peroxide. Hydrogen peroxide plays a crucial role in skin aging via extracellular matrix (ECM) degradation by increasing the matrix metalloproteinase-1 (MMP-1) levels. We analyzed the integrity of the ECM in foreskin fibroblasts using PAOX expression. PAOX increased the MMP-1 secretion and type Ι collagen degradation in 2D and 3D cultures of fibroblasts, respectively. Similarly, PAOX overexpression increased the messenger ribonucleic acid (mRNA) level of MMP-1. PAOX expression induced polyamine catabolism, decreased the spermine levels, and increased the putrescine levels. However, the exogenous polyamine treatment did not change the MMP-1 and type I collagen levels as much as PAOX expression. PAOX expression increased the reactive oxygen species (ROS) production in fibroblasts, and exogenous hydrogen peroxide increased both the ROS production and MMP-1 secretion. Furthermore, N-acetylcysteine, an antioxidant, reversed the PAOX-induced ROS production and MMP-1 secretion. PAOX induced the signaling pathways that activate activator protein-1 (AP-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which are important transcription factors for MMP-1 transactivation. We concluded that PAOX increased the ROS levels in fibroblasts, leading to an increase in MMP-1 expression. Therefore, we propose that PAOX is a potential target molecule in protecting the ECM integrity.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Factor de Transcripción AP-1 , Acetilcisteína/farmacología , Antioxidantes/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , FN-kappa B/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliaminas/metabolismo , Putrescina/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermina/metabolismo , Factor de Transcripción AP-1/metabolismo , Poliamino Oxidasa
13.
Med Sci (Basel) ; 10(3)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36135832

RESUMEN

The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 µM, Ki 1.60 µM) and 7 (IC50 0.23 µM, Ki 0.46 µM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Espermina , Acroleína/metabolismo , Flavinas , Peróxido de Hidrógeno , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Espermina/farmacología , Poliamino Oxidasa
14.
J Agric Food Chem ; 70(38): 11880-11891, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106904

RESUMEN

Polyamine oxidase (PAO) is a key enzyme maintaining polyamine homeostasis, which affects plant physiological activities. Until now, the gene members and function of PAOs in tea (Camellia sinenesis) have not been fully identified. Here, through the expression in Escherichia coli and Nicotiana benthamiana, we identified six genes annotated as CsPAO in tea genome and transcriptome and determined their enzyme reaction modes and gene expression profiles in tea cultivar 'Yinghong 9'. We found that CsPAO1,2,3 could catalyze spermine, thermospermine, and norspermidine, and CsPAO2,3 could catalyze spermidine in the back-conversion mode, which indicated that the precursor of γ-aminobutyric acid might originate from the oxidation of putrescin but not spermidine. We further investigated the changes of CsPAO activity with temperature and pH and their stability. Kinetic parameters suggested that CsPAO2 was the major PAO modifying polyamine composition in tea, and it could be inactivated by ß-hydroxyethylhydrazine and aminoguanidine. Putrescine content and CsPAO2 expression were high in tea flowers. CsPAO2 responded to wound, drought, and salt stress; CsPAO1 might be the main member responding to cold stress; anoxia induced CsPAO3. We conclude that in terms of phylogenetic tree, enzyme characteristics, and expression profile, CsPAO2 might be the dominant CsPAO in the polyamine degradation pathway.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Putrescina , Espermina/metabolismo , , Ácido gamma-Aminobutírico/metabolismo , Poliamino Oxidasa
15.
Commun Biol ; 5(1): 787, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931745

RESUMEN

Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Dominio Catalítico , Humanos , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Especificidad por Sustrato , Poliamino Oxidasa
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(2): 175-180, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36031578

RESUMEN

Objective: To investigate the effects of SI-4650, a novel small molecule inhibitor of spermine oxidase (SMO), on the proliferation and epithelial mesenchymal transformation (EMT) of human ovarian cancer SKVO-3 cells as well as its underlying molecular mechanisms. Methods: SKVO-3 cells treated with 0 µmol/L SI-4650 were used as control group, SKVO-3 cells treated with 30, 60 µmol/L SI-4650 were used as experimental group. The effects of SI-4650 on the activity of SMO, the polyamine contents and the cellular reactive oxygen species (ROS) were detected. Cell proliferation, cell cycle and mitochondrial membrane potential change of SKVO-3 cells were tested. The effects of SI-4650 on apoptosis, migration and invasion were investigated. The effects of SI-4650 on Bax, Bcl-2, Caspase3, E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase 2 ( MMP2) and MMP 9 expression levels in SKVO-3 cells were detected. Results: Comparison between blank control group and experimental groups,SI-4650 could improve the content of SI-4650 in SKVO-3 cells. SI-4650 could inhibit the activity of SMO (P<0.01), reduce the ROS (P<0.01)and polyamine content in SKVO-3 cells (P<0.01). Treatment of SKVO-3 cells with SI-4650 inhibited the proliferation (the inhibition rate was 32.27% and 47.31% in experimental groups), caused S-phase cell cycle arrest (P<0.01) and induced apoptosis (P<0.01). The expressions of Bax and c-Caspase3 in SKVO-3 cells were increased (P<0.01),the content of Bcl-2 was decreased (P<0.01), and the mitochondrial membrane potential was decreased (P<0.01), and the number of apoptotic cells was increased(31.41% and 43.51% in experimental groups). At the same time, SI-4650 could change the expression levels of EMT-related factors, increased the expression level of E-cad , decreased the expression levels of N-cad, Vimentin, MMP-2 and MMP-9, and inhibited the migration and invasion of SKVO-3 cells. Conclusion: SI-4650 can effectively inhibit proliferation, invasion and metastasis of human ovarian cancer SKVO-3 cells, and the mechanism may be related to its ability to depress the activity of SMO, interfere polyamine metabolism and induce cell cycle arrest, mitochondrial apoptosis and inhibit EMT. This study reveals potential application of SI-4650 in the treatment of ovarian cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Metaloproteinasa 2 de la Matriz , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliaminas , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno , Vimentina , Proteína X Asociada a bcl-2 , Poliamino Oxidasa
17.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886868

RESUMEN

Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17ß-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17ß-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERß) was responsible for the repression of PAOX by 17ß-estradiol. A luciferase reporter assay showed that 17ß-estradiol downregulates PAOX promoter activity and that 17ß-estradiol-dependent PAOX repression disappeared after deletions (-3126/-2730 and -1271/-1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17ß-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.


Asunto(s)
Neoplasias de la Mama , Receptor beta de Estrógeno , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas , Factor de Transcripción AP-1/genética , Poliamino Oxidasa
18.
PLoS One ; 17(4): e0267046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452470

RESUMEN

The enzyme spermine oxidase (SMOX) is involved in polyamine catabolism and converts spermine to spermidine. The enzymatic reaction generates reactive hydrogen peroxide and aldehydes as by-products that can damage DNA and other biomolecules. Increased expression of SMOX is frequently found in lung, prostate, colon, stomach and liver cancer models, and the enzyme also appears to play a role in neuronal dysfunction and vascular retinopathy. Because of growing evidence that links SMOX activity with DNA damage, inflammation, and carcinogenesis, the enzyme has come into view as a potential drug target. A major challenge in cancer research is the lack of characterization of antibodies used for identification of target proteins. To overcome this limitation, we generated a panel of high-affinity rabbit monoclonal antibodies against various SMOX epitopes and selected antibodies for use in immunoblotting, SMOX quantification assays, immunofluorescence microscopy and immunohistochemistry. Immunohistochemistry analysis with the antibody SMAB10 in normal and transformed tissues confirms that SMOX is upregulated in several different cancers. Together, the panel of antibodies generated herein adds to the toolbox of high-quality reagents to study SMOX biology and to facilitate SMOX drug development.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Anticuerpos Monoclonales , Humanos , Inmunohistoquímica , Masculino , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Espermina/metabolismo , Poliamino Oxidasa
19.
Plant Physiol ; 189(2): 1065-1082, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35298645

RESUMEN

Maize chlorotic mottle virus (MCMV) is the key pathogen causing maize lethal necrosis (MLN). Due to the sharply increased incidence of MLN in many countries, there is an urgent need to identify resistant lines and uncover the underlying resistance mechanism. Here, we showed that the abundance of maize (Zea mays) microR167 (Zma-miR167) positively modulates the degree of resistance to MCMV. Zma-miR167 directly targets Auxin Response Factor3 (ZmARF3) and ZmARF30, both of which negatively regulate resistance to MCMV. RNA-sequencing coupled with gene expression assays revealed that both ZmARF3 and ZmARF30 directly bind the promoter of Polyamine Oxidase 1 (ZmPAO1) and activate its expression. Knockdown or inhibition of enzymatic activity of ZmPAO1 suppressed MCMV infection. Nevertheless, MCMV-encoded p31 protein directly targets ZmPAO1 and enhances the enzyme activity to counteract Zma-miR167-mediated defense to some degree. We uncovered a role of the Zma-miR167-ZmARF3/30 module for restricting MCMV infection by regulating ZmPAO1 expression, while MCMV employs p31 to counteract this defense.


Asunto(s)
Peróxido de Hidrógeno , Tombusviridae , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Enfermedades de las Plantas/genética , Tombusviridae/genética , Tombusviridae/metabolismo , Zea mays/genética , Poliamino Oxidasa
20.
Biomolecules ; 12(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35204705

RESUMEN

Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.


Asunto(s)
Astrocitos , Epilepsia , Animales , Astrocitos/patología , Epilepsia/genética , Epilepsia/patología , Mamíferos , Ratones , Ratones Transgénicos , Neuronas/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/patología , Poliamino Oxidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA