Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.787
1.
Curr Microbiol ; 81(7): 185, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771339

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.


Bacteria , Polyethylene , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Polyethylene/chemistry , Polyesters/metabolism , Soil/chemistry , Soil Pollutants/analysis , Microbiota
2.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791107

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Photoelectron Spectroscopy , Plastics , Polyethylene , Photoelectron Spectroscopy/methods , Plastics/chemistry , Polyethylene/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seawater/chemistry , Microplastics/chemistry , Oxidation-Reduction
3.
Environ Sci Process Impacts ; 26(5): 882-890, 2024 May 22.
Article En | MEDLINE | ID: mdl-38693902

Microplastics can function as carriers in the environment, absorbing various toxins and spreading to diverse ecosystems. Toxins accumulated in microplastics have the potential to be re-released, posing a threat. In this study, two typical plastics, namely polyethylene (PE) and polystyrene (PS), along with the degradable plastic poly(butylene adipate-co-terephthalate) (PBAT), were subjected to a long-term ultraviolet alternating weathering experiment. The study investigated the variations in the weathering process and pollutant adsorption of microplastics of different particle sizes. Furthermore, the adsorption capacity of microplastics for various pollutants was assessed. The findings indicate that particle size significantly influences weathering, leading to variations in adsorption capacity. The weathered PE displays a higher adsorption capacity for azo dyes. Additionally, the adsorption capacity of PBAT for neutral red is double that of antibiotics. Importantly, the maximum adsorption capacity of PBAT for pollutants after aging is approximately 10 times greater than that of PE. Consequently, degradable plastics undergoing weathering in the natural environment may pose a higher ecological risk than traditional plastics.


Microplastics , Water Pollutants, Chemical , Microplastics/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Polyethylene/chemistry , Environmental Monitoring , Plastics/chemistry , Models, Chemical , Polystyrenes/chemistry , Weather
4.
Sensors (Basel) ; 24(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38733034

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Foot Orthoses , Temperature , Humans , Female , Male , Adult , Young Adult , Polyvinyls/chemistry , Polyethylene/chemistry , Polymers/chemistry , Materials Testing
5.
J Hazard Mater ; 472: 134425, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38691998

Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.


Agriculture , Bacteria , RNA, Ribosomal, 16S , Soil Microbiology , Soil Pollutants , Bacteria/metabolism , Bacteria/genetics , Soil Pollutants/metabolism , Biodegradation, Environmental , Polyethylene/chemistry , Soil/chemistry , Polyesters/metabolism , Polyesters/chemistry , Biodegradable Plastics/chemistry , Biodegradable Plastics/metabolism
6.
J Hazard Mater ; 472: 134488, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38703685

Bioelectrochemical systems (BES) offer significant potential for treating refractory waste and recovering bioenergy. However, their ability to mitigate microplastic pollution in wastewater remains unexplored. This study showed that BES facilitated the treatment of polyethylene (PE), polyvinyl chloride (PVC), and Mix (PE+PVC) microplastic wastewater and the methane recovery (40.61%, 20.02%, 21.19%, respectively). The lactate dehydrogenase (LDH), adenosine triphosphate (ATP), cytochrome c, and nicotinamide adenine dinucleotide (NADH/NAD+) ratios were elevated with electrical stimulation. Moreover, the applied voltage improved the polysaccharides content of the extracellular polymeric substances (EPS) in the PE-BES but decreased in PVC-BES, while the proteins showed the opposite trend. Metatranscriptomic sequencing showed that the abundance of fermentation bacteria, acetogens, electrogens, and methanogens was greatly enhanced by applying voltage, especially at the anode. Methane metabolism was dominated by the acetoclastic methanogenic pathway, with the applied voltage promoting the enrichment of Methanothrix, resulting in the direct conversion of acetate to acetyl-CoA via acetate-CoA ligase (EC: 6.2.1.1), and increased metabolic activity in the anode. Moreover, applied voltage greatly boosted the function genes expression level related to energy metabolism, tricarboxylic acid (TCA) cycle, electron transport, and transporters on the anode biofilm. Overall, these results demonstrate that BES can mitigate microplastic pollution during wastewater treatment.


Biofilms , Methane , Microplastics , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Methane/metabolism , Anaerobiosis , Water Pollutants, Chemical/metabolism , Bioreactors , Waste Disposal, Fluid/methods , Electrochemical Techniques , Polyethylene/metabolism , Polyethylene/chemistry
8.
J Hazard Mater ; 470: 134176, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569347

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Biodegradation, Environmental , Microbiota , Microplastics , Polyesters , Soil Microbiology , Soil Pollutants , Polyesters/metabolism , Polyesters/chemistry , Microplastics/toxicity , Soil Pollutants/metabolism , Polyethylene/chemistry , Carbon/chemistry , Biodegradable Plastics/chemistry , Bacteria/metabolism , Bacteria/genetics , Soil/chemistry
9.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678403

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Charcoal , Microplastics , Trichloroethylene , Trichloroethylene/chemistry , Charcoal/chemistry , Adsorption , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Polyethylene/chemistry
11.
Biochim Biophys Acta Biomembr ; 1866(5): 184327, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679310

The escalation of global plastic production, reaching an annual output of 400 million tons, has significantly intensified concerns regarding plastic waste management. This has been exacerbated by improper recycling and disposal practices, contributing to the impending crisis of plastic pollution. Predictions indicate that by 2025, the environment will bear the burden of over ten billion metric tons of accumulated plastic waste. This situation has led to the concerning release of microplastics and nanoplastics (NPs) into the environment as plastic materials degrade, thereby posing risks to both ecosystems and human health. Nanoparticle interactions with living organisms have garnered significant attention due to their potential to disrupt vital biological processes. Of particular interest are lipid membranes, acting as crucial gatekeepers, underscoring the importance of comprehending the intricate process of NP penetration. Molecular dynamics (MD) simulations serve as a robust tool, offering molecular-level insights into these intricate interactions. In this study, we leverage all-atom MD simulations to delve into the interactions between lipid bilayers and polyethylene (PETH) chains of varying lengths. The investigation spans diverse lipid bilayer compositions-ranging from pure POPC to POPC:DPPC mixtures-revealing how PETH accommodates itself, adopts extended conformations, and influences membrane structure and ordering. Significantly, while longer PETH chains demonstrate limited passive diffusion, their potential to penetrate bilayers over extended timescales emerges as a significant revelation. Overall, this research significantly advances our comprehension of NP-membrane interactions, shedding light on the potential environmental and health implications that lie ahead.


Lipid Bilayers , Molecular Dynamics Simulation , Phospholipids , Polyethylene , Lipid Bilayers/chemistry , Polyethylene/chemistry , Phospholipids/chemistry
12.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Article En | MEDLINE | ID: mdl-38685194

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Microplastics , Plastics , Polyethylene/chemistry , Environmental Monitoring , Environmental Biomarkers
13.
Ecotoxicol Environ Saf ; 277: 116346, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38669869

Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.


Microplastics , Polyethylene , Ultraviolet Rays , Water Pollutants, Chemical , Microplastics/toxicity , Polyethylene/toxicity , Polyethylene/chemistry , Humans , Water Pollutants, Chemical/toxicity , Bathing Beaches , Cell Survival/drug effects , Animals , Plastics/toxicity , Cell Line
14.
Chemosphere ; 357: 141961, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615954

Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs. In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1cm-2 and detection limit of ∼0.226 mgmL-1, with promising correlation coefficient (R2) towards the detection of PE (∼27-32 µm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 µm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.


Cerium , Environmental Monitoring , Hydrophobic and Hydrophilic Interactions , Microplastics , Water Pollutants, Chemical , Cerium/chemistry , Water Pollutants, Chemical/analysis , Microplastics/analysis , Environmental Monitoring/methods , Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrodes , Polyethylene/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Polypropylenes/chemistry , Limit of Detection
15.
Chemosphere ; 356: 141875, 2024 May.
Article En | MEDLINE | ID: mdl-38583532

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Environmental Monitoring , Polyethylene , Pyrenes , Resins, Synthetic , Water Pollutants, Chemical , Pyrenes/chemistry , Polyethylene/chemistry , Diffusion , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Environmental Monitoring/methods , Kinetics , Polymers/chemistry
16.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643575

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene , Polypropylenes , Water Pollutants, Chemical , Polypropylenes/chemistry , Polyethylene/chemistry , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Microplastics/toxicity , Microplastics/metabolism , Fresh Water/microbiology , Estuaries
17.
Int J Biol Macromol ; 266(Pt 2): 131287, 2024 May.
Article En | MEDLINE | ID: mdl-38565367

In the quest to enhance the performance of natural fiber-reinforced polymer composites, achieving optimal dispersion of fiber materials within a polymeric matrix has been identified as a key strategy. Traditional approaches, such as the surface modification of natural fibers, often necessitate the use of additional synthetic chemical processes, presenting a significant challenge. In this work, taking poly (acrylonitrile-styrene-acrylic) (ASA) and bamboo fiber (BF) as a model system, we attempt to use the elastomer-chlorinated polyethylene (CPE) as a compatibilizer to tailor the mechanical properties of ASA/CPE/BF ternary composites. It was found that increasing CPE content contributed to more remarkable reinforcing efficiency, where composite with 15 phr CPE exhibited a nearly four-fold increase in reinforcing efficiency of tensile strength (20 %) compared with that of composite system without CPE (4.1 %). Such improvement was ascribed to the compatibilizing effect exerted by CPE, which prevented the aggregation of BF within polymeric matrix. Surface properties suggested the stronger interface between CPE and BF compared to that between ASA and BF and thereby contributed to the compabilizing effect. Since no chemical process was involved, it is suggested that the introduction of elastomer to be a universal, green and sustainable approach to achieve the reinforcement.


Acrylic Resins , Polyethylene , Polyethylene/chemistry , Acrylic Resins/chemistry , Tensile Strength , Acrylonitrile/chemistry
18.
Waste Manag ; 179: 99-109, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38471253

Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.


Hot Temperature , Polyethylene , Polyethylene/chemistry , Pyrolysis , Polypropylenes , Polystyrenes , Sulfur , Hazardous Substances , Plastics/chemistry
19.
J Environ Manage ; 356: 120446, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484595

There is a serious concern about the large amount of accumulated plastic waste all around the world. Synthetic polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (HDPE, LDPE) are substantially present in the plastic waste generated. There are various methods reported to minimise such plastics waste with certain limitations. To overcome such limitations the present study have been carried out in which thermal decomposition of plastic waste of PET, PP, HDPE, and LDPE studied using a novel plasma pyrolysis reactor. The major objective of this work is to investigate the viability of the continuous plasma pyrolysis process for the treatment of various plastic wastes with respect to waste volume reduction and production of combustible hydrogen-rich fuel gas. The effect of temperature and feed flow rate on product gas yield, product gas efficiency, solid residue yield, and H2/CO ratio has been evaluated. The experiments have been carried out at different temperatures within the range of 700-1000 °C. Plasma pyrolysis system exhibited combustible hydrogen-rich gas as a product and solid residue. Liquid products have not been observed during plasma pyrolysis, unlike conventional pyrolysis. The reaction mechanism of plastic cracking has been discussed based on literature and products obtained in the present work. The effects of feed flow rate and temperature on exergy efficiency were studied using the response surface method. The mass, energy, and exergy analyses have also been carried out for all the experiments, which are in the range of 0.95-0.99, 0.48 to 0.77, and 0.30 to 0.69, respectively.


Plastics , Polyethylene , Polyethylene/chemistry , Plastics/chemistry , Hydrogen , Pyrolysis , Polypropylenes/chemistry , Polyethylene Terephthalates
20.
PeerJ ; 12: e17041, 2024.
Article En | MEDLINE | ID: mdl-38426135

Вiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type (Strongylocentrotus nudus, Patiria pectinifera, Mizuhopecten yessoensis). Significant changes are found in the functional groups of the polymer after 3 days of incubation in the digestive gland homogenates of the studied marine invertebrates. A significant increase in the calculated CI (carbonyl index) and COI (сarbon-oxygen index) indices compared to the control sample was observed. The results suggest that digestive enzymes of studied organisms may play an important role in the biogeochemical cycling of plastic.


Polyethylene , Polyethylene/chemistry , Biodegradation, Environmental
...