Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Genet ; 14(10): e1007654, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30307990

RESUMEN

Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , Animales , Bacterias/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica/genética , Código Genético , Humanos , ARN/metabolismo , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Ribonucleasas/genética
3.
Arch Microbiol ; 200(5): 783-791, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29423562

RESUMEN

Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA-) and BBG232 (srfAC-) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA- (surfactin synthetase) are involved in fengycin production.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/fisiología , Lipopéptidos/biosíntesis , Polirribonucleótido Nucleotidiltransferasa/fisiología , Bacillus subtilis/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Lipopéptidos/genética , Mutación , Operón
4.
J Bacteriol ; 199(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396352

RESUMEN

In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of rhlE, rhlB, and rhlE rhlB mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of rhlE to the lacZ reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins.IMPORTANCE DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. Caulobacter crescentus is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for rhlB loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/fisiología , ARN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Frío , Regulación Enzimológica de la Expresión Génica/fisiología
5.
Nucleic Acids Res ; 45(10): 5980-5994, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28453818

RESUMEN

In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.


Asunto(s)
Proteínas Bacterianas/genética , ADN Intergénico/genética , Endorribonucleasas/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Complejos Multienzimáticos/fisiología , Operón/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , Proteínas Quinasas/genética , ARN Helicasas/fisiología , Estabilidad del ARN/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Staphylococcus aureus/genética , Factores de Transcripción/genética , Secuencia de Bases , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Plásmidos , ARN Bacteriano/genética , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Secuencias Reguladoras de Ácidos Nucleicos , Staphylococcus aureus/enzimología
6.
Nucleic Acids Res ; 42(9): 5894-906, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24682814

RESUMEN

Long 3' untranslated regions (3'UTRs) are common in eukaryotic mRNAs. In contrast, long 3'UTRs are rare in bacteria, and have not been characterized in detail. We describe a 3'UTR of 310 nucleotides in hilD mRNA, a transcript that encodes a transcriptional activator of Salmonella enterica pathogenicity island 1 (SPI-1). Deletion of the hilD 3'UTR increases the hilD mRNA level, suggesting that the hilD 3'UTR may play a role in hilD mRNA turnover. Cloning of the hilD 3'UTR downstream of the green fluorescent protein (gfp) gene decreases green fluorescent protein (GFP) activity in both Escherichia coli and S. enterica, indicating that the hilD 3'UTR can act as an independent module. S. enterica mutants lacking either ribonuclease E or polynucleotide phosphorylase contain similar amounts of hilD and hilD Δ3'UTR mRNAs, suggesting that the hilD 3'UTR is a target for hilD mRNA degradation by the degradosome. The hilD 3'UTR is also necessary for modulation of hilD and SPI-1 expression by the RNA chaperone Hfq. Overexpression of SPI-1 in the absence of the hilD 3'UTR retards Salmonella growth and causes uncontrolled invasion of epithelial cells. Based on these observations, we propose that the S. enterica hilD 3'UTR is a cis-acting element that contributes to cellular homeostasis by promoting hilD mRNA turnover.


Asunto(s)
Proteínas Bacterianas/genética , ARN Bacteriano/genética , ARN Mensajero/genética , Salmonella typhimurium/genética , Factores de Transcripción/genética , Regiones no Traducidas 3' , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Endorribonucleasas/fisiología , Regulación Bacteriana de la Expresión Génica , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/fisiología , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo
7.
Adv Cancer Res ; 119: 161-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23870512

RESUMEN

RNA degradation plays a fundamental role in maintaining cellular homeostasis whether it occurs as a surveillance mechanism eliminating aberrant mRNAs or during RNA processing to generate mature transcripts. 3'-5' exoribonucleases are essential mediators of RNA decay pathways, and one such evolutionarily conserved enzyme is polynucleotide phosphorylase (PNPase). The human homologue of this fascinating enzymatic protein (hPNPaseold-35) was cloned a decade ago in the context of terminal differentiation and senescence through a novel "overlapping pathway screening" approach. Since then, significant insights have been garnered about this exoribonuclease and its repertoire of expanding functions. The objective of this review is to provide an up-to-date perspective of the recent discoveries made relating to hPNPaseold-35 and the impact they continue to have on our comprehension of its expanding and diverse array of functions.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , Animales , Proteínas Bacterianas/química , Diferenciación Celular , Línea Celular Tumoral , Senescencia Celular , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Homeostasis , Humanos , Ratones , Modelos Biológicos , Filogenia , Proteínas de Plantas/química , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/genética , ARN Mitocondrial , Especificidad por Sustrato
8.
J Biol Chem ; 288(12): 7996-8003, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23362267

RESUMEN

A large group of bacterial small regulatory RNAs (sRNAs) use the Hfq chaperone to mediate pairing with and regulation of mRNAs. Recent findings help to clarify how Hfq acts and highlight the role of the endonuclease RNase E and its associated proteins (the degradosome) in negative regulation by these sRNAs. sRNAs frequently uncouple transcription and translation by blocking ribosome access to the mRNA, allowing other proteins access to the mRNA. As more examples of sRNA-mediated regulation are studied, more variations on how Hfq, RNase E, and other proteins collaborate to bring about sRNA-based regulation are being found.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/fisiología , ARN Pequeño no Traducido/fisiología , Salmonella enterica/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/metabolismo , ARN Helicasas/fisiología , Estabilidad del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella enterica/enzimología
9.
Genes Dev ; 25(4): 385-96, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21289064

RESUMEN

Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/fisiología , Operón Lac , Modelos Biológicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/fisiología , Organismos Modificados Genéticamente , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/fisiología , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/fisiología , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Transducción Genética
10.
Methods Mol Biol ; 553: 39-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19588100

RESUMEN

DNA microarrays have become a mainstream tool in experimental plant biology. The constant improvements in the technological platforms have enabled the development of the tiling DNA microarrays that cover the whole genome, which in turn catalyzed the wide variety of creative applications of such microarrays in the areas as diverse as global studies of genetic variation, DNA-binding proteins, DNA methylation, and chromatin and transcriptome dynamics. This chapter attempts to summarize such applications as well as discusses some technical and strategic issues that are particular to the use of tiling microarrays.


Asunto(s)
Mapeo Cromosómico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Plantas/genética , Inmunoprecipitación de Cromatina/métodos , Mapeo Cromosómico/métodos , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/fisiología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Genoma de Planta/fisiología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/fisiología , Plantas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/antagonistas & inhibidores , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/fisiología , Estabilidad del ARN/fisiología , Análisis de Secuencia de ADN/métodos
11.
Adv Exp Med Biol ; 603: 217-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17966418

RESUMEN

Low temperatures as well as encounters with host phagocytes are two stresses that have been relatively well studied in many species of bacteria. The exoribonuclease polynucleotide phosphorylase (PNPase) has previously been shown to be required by several species of bacteria, including Yersinia, for low-temperature growth. We have shown that PNPase also enhances the ability of Yersinia to withstand the killing activities of murine macrophages. We have gone on to show that PNPase is required for the optimal functioning of Yersinia's type three secretion system (T3SS), an organelle that injects effector proteins directly into host cells. Surprisingly, the PNPase-mediated effect on T3SS activity is independent of PNPase's ribonuclease activity and instead requires only its S1 RNA-binding domain. In stark contrast, the catalytic activity of PNPase is strictly required for enhanced growth at low temperature. Preliminary experiments suggest that the RNA-binding interface of the S1 domain is critical for its T3SS-enhancing activity. Our findings indicate that PNPase plays versatile roles in promoting Yersinia's survival in response to stressful conditions.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa/fisiología , Yersinia/fisiología , Animales , Genes Bacterianos , Humanos , Macrófagos/inmunología , Ratones , Mutación , Polirribonucleótido Nucleotidiltransferasa/genética , Virulencia , Yersinia/genética , Yersinia/inmunología , Yersinia/patogenicidad
12.
J Mol Biol ; 372(1): 23-36, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17658549

RESUMEN

The mitochondrial degradosome (mtEXO), the main RNA-degrading complex of yeast mitochondria, is composed of two subunits: an exoribonuclease encoded by the DSS1 gene and an RNA helicase encoded by the SUV3 gene. We expressed both subunits of the yeast mitochondrial degradosome in Escherichia coli, reconstituted the complex in vitro and analyzed the RNase, ATPase and helicase activities of the two subunits separately and in complex. The results reveal a very strong functional interdependence. For every enzymatic activity, we observed significant changes when the relevant protein was present in the complex, compared to the activity measured for the protein alone. The ATPase activity of Suv3p is stimulated by RNA and its background activity in the absence of RNA is reduced greatly when the protein is in the complex with Dss1p. The Suv3 protein alone does not display RNA-unwinding activity and the 3' to 5' directional helicase activity requiring a free 3' single-stranded substrate becomes apparent only when Suv3p is in complex with Dss1p. The Dss1 protein alone does have some basal exoribonuclease activity, which is not ATP-dependent, but in the presence of Suv3p the activity of the entire complex is enhanced greatly and is entirely ATP-dependent, with no residual activity observed in the absence of ATP. Such absolute ATP-dependence is unique among known exoribonuclease complexes. On the basis of these results, we propose a model in which the Suv3p RNA helicase acts as a molecular motor feeding the substrate to the catalytic centre of the RNase subunit.


Asunto(s)
Endorribonucleasas/genética , Endorribonucleasas/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/genética , ARN Helicasas/fisiología , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/metabolismo , Dominio Catalítico , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Escherichia coli , Exorribonucleasas/metabolismo , Genes Fúngicos/fisiología , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/aislamiento & purificación , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Subunidades de Proteína/metabolismo , ARN Helicasas/aislamiento & purificación , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformación Bacteriana
13.
J Biomed Sci ; 14(4): 523-32, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17514363

RESUMEN

The structure and function of polynucleotide phosphorylase (PNPase) and the exosome, as well as their associated RNA-helicases proteins, are described in the light of recent studies. The picture raised is of an evolutionarily conserved RNA-degradation machine which exonucleolytically degrades RNA from 3' to 5'. In prokaryotes and in eukaryotic organelles, a trimeric complex of PNPase forms a circular doughnut-shaped structure, in which the phosphorolysis catalytic sites are buried inside the barrel-shaped complex, while the RNA binding domains create a pore where RNA enters, reminiscent of the protein degrading complex, the proteasome. In some archaea and in the eukaryotes, several different proteins form a similar circle-shaped complex, the exosome, that is responsible for 3' to 5' exonucleolytic degradation of RNA as part of the processing, quality control, and general RNA degradation process. Both PNPase in prokaryotes and the exosome in eukaryotes are found in association with protein complexes that notably include RNA helicase.


Asunto(s)
Evolución Molecular , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/química , ARN Helicasas/fisiología , Estabilidad del ARN , Animales , Exonucleasas/metabolismo , Humanos , Modelos Biológicos , Filogenia , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , Relación Estructura-Actividad
14.
Annu Rev Microbiol ; 61: 71-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17447862

RESUMEN

The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.


Asunto(s)
Endorribonucleasas/fisiología , Escherichia coli/enzimología , Escherichia coli/genética , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/fisiología , ARN Mensajero/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/fisiología , Endorribonucleasas/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Complejos Multienzimáticos/química , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/fisiología , Filogenia , Polirribonucleótido Nucleotidiltransferasa/química , ARN Helicasas/química
15.
J Bacteriol ; 189(5): 1866-73, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17189377

RESUMEN

The impressive disease spectrum of Streptococcus pyogenes (the group A streptococcus [GAS]) is believed to be determined by its ability to modify gene expression in response to environmental stimuli. Virulence gene expression is controlled tightly by several different transcriptional regulators in this organism. In addition, expression of most, if not all, GAS genes is determined by a global mechanism dependent on growth phase. To begin an analysis of growth-phase regulation, we compared the transcriptome 2 h into stationary phase to that in late exponential phase of a serotype M3 GAS strain. We identified the arc transcript as more abundant in stationary phase in addition to the sag and sda transcripts that had been previously identified. We found that in stationary phase, the stability of sagA, sda, and arcT transcripts increased dramatically. We found that polynucleotide phosphorylase (PNPase [encoded by pnpA]) is rate limiting for decay of sagA and sda transcripts in late exponential phase, since the stability of these mRNAs was greater in a pnpA mutant, while stability of control mRNAs was unaffected by this mutation. Complementation restored the wild-type decay rate. Furthermore, in a pnpA mutant, the sagA mRNA appeared to be full length, as determined by Northern hybridization. It seems likely that mRNAs abundant in stationary phase are insensitive to the normal decay enzyme(s) and instead require PNPase for this process. It is possible that PNPase activity is limited in stationary phase, allowing persistence of these important virulence factor transcripts at this phase of growth.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Estabilidad del ARN , Streptococcus pyogenes/crecimiento & desarrollo , Streptococcus pyogenes/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , Transcripción Genética
16.
Mol Cell Biol ; 26(22): 8475-87, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16966381

RESUMEN

We recently identified polynucleotide phosphorylase (PNPase) as a potential binding partner for the TCL1 oncoprotein. Mammalian PNPase exhibits exoribonuclease and poly(A) polymerase activities, and PNPase overexpression inhibits cell growth, induces apoptosis, and stimulates proinflammatory cytokine production. A physiologic connection for these anticancer effects and overexpression is difficult to reconcile with the presumed mitochondrial matrix localization for endogenous PNPase, prompting this study. Here we show that basal and interferon-beta-induced PNPase was efficiently imported into energized mitochondria with coupled processing of the N-terminal targeting sequence. Once imported, PNPase localized to the intermembrane space (IMS) as a peripheral membrane protein in a multimeric complex. Apoptotic stimuli caused PNPase mobilization following cytochrome c release, which supported an IMS localization and provided a potential route for interactions with cytosolic TCL1. Consistent with its IMS localization, PNPase knockdown with RNA interference did not affect mitochondrial RNA levels. However, PNPase reduction impaired mitochondrial electrochemical membrane potential, decreased respiratory chain activity, and was correlated with altered mitochondrial morphology. This resulted in FoF1-ATP synthase instability, impaired ATP generation, lactate accumulation, and AMP kinase phosphorylation with reduced cell proliferation. Combined, the data demonstrate an unexpected IMS localization and a key role for PNPase in maintaining mitochondrial homeostasis.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/fisiología , Membranas Mitocondriales/enzimología , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis , Línea Celular , Citocromos c/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN/metabolismo , Interferencia de ARN , ARN Mitocondrial , Ribonucleasas/metabolismo , Ribonucleasas/fisiología
17.
Trends Biochem Sci ; 31(7): 359-65, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16766188

RESUMEN

In Escherichia coli, the multi-enzyme RNA degradosome contributes to the global, posttranscriptional regulation of gene expression. The degradosome components are recognized through natively unstructured "microdomains" comprising as few as 15-40 amino acids. Consequently, the degradosome might experience a comparatively smaller number of evolutionary constraints, because there is little requirement to maintain a folded state for the interaction sites. New regulatory properties of the degradosome could arise with relative rapidity, because partners that modify its function could be recruited by quickly evolving microdomains. The unusual combination of the centrality of RNA degradation in gene expression and the generality of natively unstructured microdomains in recognition can fortuitously confer a capacity for efficacious adaptive change to degradosome-like assemblies in eubacteria.


Asunto(s)
Endorribonucleasas/fisiología , Escherichia coli/genética , Evolución Molecular , Complejos Multienzimáticos/fisiología , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/fisiología , Modelos Moleculares , Filogenia
18.
Microbiol Immunol ; 49(11): 1003-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16301812

RESUMEN

RNase E and its complex with other proteins ('degradosome') play an important role in RNA processing and decay in Escherichia coli and in many other bacteria. To identify the proteins which can potentially interact with this enzyme in mycobacteria, Mycobacterium tuberculosis H37Rv RNase E was cloned and expressed as a 6HisFLAG-tagged fusion protein. Analysis of the mycobacterial RNase E overexpressed and purified from M. bovis BCG revealed the presence of GroEL and two other copurified proteins, products of the Mb1721 (inorganic polyphosphate/ATP-NAD kinase) and Mb0825c (acetyltransferase) genes. Identical copies of these two genes can be found in M. tuberculosis H37Rv.


Asunto(s)
Endorribonucleasas/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Complejos Multienzimáticos/fisiología , Mycobacterium/genética , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN Helicasas/fisiología , Endorribonucleasas/metabolismo , Mycobacterium/metabolismo
19.
FEBS J ; 272(2): 454-63, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15654883

RESUMEN

The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteína de Factor 1 del Huésped/metabolismo , Poli A/biosíntesis , Polinucleotido Adenililtransferasa/fisiología , Poli A/química , Poli C/biosíntesis , Polirribonucleótido Nucleotidiltransferasa/fisiología , ARN/química
20.
J Biol Chem ; 280(1): 156-63, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15509583

RESUMEN

Both low temperatures and encounters with host phagocytes are two stresses that have been relatively well studied in many species of bacteria. Previous work has shown that the exoribonuclease polynucleotide phosphorylase (PNPase) is required for Yersiniae to grow at low temperatures. Here, we show that PNPase also enhances the ability of Yersinia pseudotuberculosis and Yersinia pestis to withstand the killing activities of murine macrophages. PNPase is required for the optimal functioning of the Yersinia type three secretion system (TTSS), an organelle that injects effector proteins directly into host cells. Unexpectedly, the effect of PNPase on the TTSS is independent of its ribonuclease activity and instead requires its S1 RNA binding domain. In contrast, catalytically inactive enzyme does not enhance the low temperature growth effect of PNPase. Surprisingly, wild-type-like TTSS functioning was restored to the pnp mutant strain by expressing just the approximately 70 amino acid S1 domains from either PNPase, RNase R, RNase II, or RpsA. Our findings suggest that PNPase plays multifaceted roles in enhancing Yersinia survival in response to stressful conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Dominio Catalítico , Exorribonucleasas/fisiología , Polirribonucleótido Nucleotidiltransferasa/fisiología , Yersinia pestis/enzimología , Yersinia pseudotuberculosis/enzimología , Animales , Dominio Catalítico/fisiología , Frío , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Macrófagos/microbiología , Macrófagos/patología , Ratones , Mutación , Yersinia pestis/crecimiento & desarrollo , Yersinia pseudotuberculosis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...