Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Curr Protoc ; 4(9): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39240231

RESUMEN

Translation of mRNA into functional proteins is a fundamental process underlying many aspects of plant growth and development. Yet, the role of translational regulation in plants across diverse tissue types, including seeds, is not well known due to the lack of methods targeting these processes. Studying the seed translatome could unveil seed-specific regulatory mechanisms, offering valuable insights for breeding efforts to enhance seed traits. Polysome profiling is a widely used technique for studying mRNAs being translated. However, the traditional method is time-consuming and has a low polysome recovery rate; therefore, it requires substantial starting material. This is particularly challenging for species or mutants with limited seed quantities. Additionally, seed polysome fractions often yield low quality RNA due to the abundance of various compounds that interfere with conventional RNA extraction protocols. Here we present a robust polysome extraction method incorporating a size-exclusion step for polysome concentration streamlined with a rapid RNA extraction method optimized for seeds. This protocol works across multiple plant species and offers increased speed and robustness, requiring less than half the amount of seed tissue and time compared to conventional methods while ensuring high polysome recovery and yield of high-quality RNA for downstream experiments. These features make this protocol an ideal tool for studying seed translation efficiency and hold broad applicability across various plant species and tissues. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Robust polysome extraction for seeds Basic Protocol 2: Rapid fraction total RNA extraction.


Asunto(s)
Polirribosomas , ARN de Planta , Semillas , Semillas/genética , Polirribosomas/metabolismo , Polirribosomas/genética , ARN de Planta/aislamiento & purificación , ARN de Planta/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación
2.
RNA Biol ; 21(1): 23-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39194147

RESUMEN

GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.


Asunto(s)
Empalme Alternativo , Polirribosomas , Biosíntesis de Proteínas , ARN Mensajero , Proteínas del Complejo SMN , Humanos , Proteínas del Complejo SMN/metabolismo , Proteínas del Complejo SMN/genética , Polirribosomas/metabolismo , Polirribosomas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones , Células HeLa , Regulación de la Expresión Génica
3.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964322

RESUMEN

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Asunto(s)
Núcleo Celular , Cromatina , ARN Helicasas DEAD-box , ARN Mensajero , Animales , Humanos , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Polirribosomas/metabolismo , Polirribosomas/genética , Aprendizaje Automático , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Exosomas/genética
4.
RNA ; 30(9): 1164-1183, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38844344

RESUMEN

In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.


Asunto(s)
Adenosina Desaminasa , Hepatocitos , Edición de ARN , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Hepatocitos/metabolismo , Polirribosomas/metabolismo , Polirribosomas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Transcriptoma , Técnicas de Inactivación de Genes , Línea Celular
5.
Nucleic Acids Res ; 52(13): 7925-7946, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721779

RESUMEN

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Saccharomyces cerevisiae , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polirribosomas/metabolismo , Polirribosomas/genética , Inteligencia Artificial , Estrés Fisiológico/genética , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Iniciación de la Cadena Peptídica Traduccional
6.
Mol Cell ; 84(6): 1078-1089.e4, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340715

RESUMEN

Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Ribosomas/genética , Ribosomas/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Mamíferos
7.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38016476

RESUMEN

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Asunto(s)
Adenina , Cuerpos de Procesamiento , Biosíntesis de Proteínas , Proteínas de Unión al ARN , Humanos , Cromatografía Liquida , Células HeLa , Polirribosomas/genética , Proteómica , ARN Mensajero/genética , Espectrometría de Masas en Tándem , Adenina/análogos & derivados , Adenina/metabolismo , Proteínas de Unión al ARN/metabolismo
8.
RNA ; 29(12): 1881-1895, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37730435

RESUMEN

Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.


Asunto(s)
Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/genética , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Polirribosomas/genética , ARN , Proteínas Protozoarias/genética , Mamíferos
9.
Nature ; 620(7972): 163-171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495694

RESUMEN

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Asunto(s)
Ambystoma mexicanum , Evolución Biológica , Biosíntesis de Proteínas , Regeneración , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Ambystoma mexicanum/fisiología , Secuencia de Aminoácidos , Extremidades/fisiología , Regeneración/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cicatrización de Heridas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Especificidad de la Especie , Antioxidantes/metabolismo , Nutrientes/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo
10.
Methods Mol Biol ; 2632: 281-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781736

RESUMEN

Polysome fractionation makes use of density gradients and ultracentrifugation to separate transcripts based on their specific number of bound ribosomes, and can be combined with downstream analysis such as cDNA-seq (commonly known as RNA-seq), microarray analysis, RT-qPCR, or Northern blotting. Here, we describe the application of Nanopore direct RNA sequencing to quantify monosome- and polysome-bound full-length transcripts after polysome fractionation, RNA cleanup, and size selection, using the yeast glucose stress response as an example use case.


Asunto(s)
Nanoporos , ARN , ARN/genética , ARN/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Análisis de Secuencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biosíntesis de Proteínas
11.
FEBS Lett ; 596(21): 2834-2850, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053046

RESUMEN

The hypoxia-inducible factors (HIF)-1α and HIF-2α are central regulators of transcriptional programmes in settings such as development and tumour expansion. HIF-2α moonlights as a cap-dependent translation factor. We provide new insights into how the interferon-stimulated gene 15 (ISG15), a ubiquitin-like modifier, and the HIFs regulate one another in hypoxia and interferon-induced cells. We show that upon ISGylation induction and HIF-α stabilization, both HIFs promote protein ISGylates through transcriptional and/or post-transcriptional pathways. We show the first evidence of HIF-2α modification by ISG15. ISGylation induces system-level alterations to the HIF transcriptional programme and increases the cytoplasmic/nuclear fraction and translation activity of HIF-2α. This work identifies ISG15 as a regulator of hypoxic mRNA translation, which has implications for immune processes and disease progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Hipoxia , Polirribosomas , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Hipoxia de la Célula/genética , Hipoxia de la Célula/inmunología , Hipoxia/genética , Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Interferones/genética , Interferones/inmunología , Polirribosomas/genética , Polirribosomas/inmunología
12.
J Vis Exp ; (185)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848824

RESUMEN

The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules. Then, lysates are cleared by low-speed centrifugation, and 15% of the supernatant is used for total RNA (TOTAL) isolation. The remaining cleared lysate is used to isolate polysomes by ultracentrifugation through a two-layer sucrose cushion (12% and 33.5%). Polysome-associated mRNA (PAR) is purified from polysomal pellets after resuspension. Both TOTAL and PAR are evaluated by highly sensitive capillary electrophoresis to meet the quality standards of sequencing libraries for RNA-seq. As an example of a downstream application, after sequencing, standard pipelines for gene expression analysis can be used to obtain differentially expressed genes at the transcriptome and translatome levels. In summary, this method, in combination with RNA-seq, allows the study of the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.


Asunto(s)
Glycine max , Biosíntesis de Proteínas , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , RNA-Seq , Análisis de Secuencia de ARN , Glycine max/genética , Glycine max/metabolismo
13.
Sci Rep ; 12(1): 5718, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383235

RESUMEN

Protein synthesis is dysregulated in many diseases, but we lack a systems-level picture of how signaling molecules and RNA binding proteins interact with the translational machinery, largely due to technological limitations. Here we present riboPLATE-seq, a scalable method for generating paired libraries of ribosome-associated and total mRNA. As an extension of the PLATE-seq protocol, riboPLATE-seq utilizes barcoded primers for pooled library preparation, but additionally leverages anti-rRNA ribosome immunoprecipitation on whole polysomes to measure ribosome association (RA). We compare RA to its analogue in ribosome profiling and RNA sequencing, translation efficiency, and demonstrate both the performance of riboPLATE-seq and its utility in detecting translational alterations induced by specific inhibitors of protein kinases.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Biosíntesis de Proteínas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polirribosomas/genética , Polirribosomas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Análisis de Secuencia de ARN/métodos
14.
Methods Mol Biol ; 2428: 157-171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171479

RESUMEN

Translational control provides a strategy for rapid optimization of gene expression and restoration of protein homeostasis in response to cellular stresses. An important mechanism for translational control involves phosphorylation of eIF2, which invokes the integrated stress response (ISR). In the ISR, initiation of bulk protein synthesis is lowered coincident with enhanced translation efficiency of select gene transcripts that serve critical functions in stress adaptation. In this chapter, we focus on polysome profiling as a tool for establishing and characterizing translation control induced by eIF2 phosphorylation during environmental stresses. We describe in detail the experimental strategies of polysome profiling for detecting bulk repression of the translational machinery and quantifying translational control of key stress-induced gene transcripts. These experimental strategies can be adjusted to measure individual gene transcripts or genome-wide analyses and can be adapted to measure changes in the levels of ribosome subunits and associated factors invoked by various cellular cues in the ISR.


Asunto(s)
Factor de Transcripción Activador 4 , Biosíntesis de Proteínas , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Estudio de Asociación del Genoma Completo , Fosforilación , Polirribosomas/genética , Polirribosomas/metabolismo
15.
Methods Mol Biol ; 2418: 223-241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35119669

RESUMEN

Protein synthesis and degradation determine the relationship between mRNA and corresponding protein amounts. This relationship can change in a dynamic and selective fashion when translational efficiencies of transcript subsets are altered downstream of, for example, translation factors and/or RNA binding proteins. Notably, even transcription factors such as estrogen receptor alpha (ERα) can modulate mRNA translation in a transcript-selective manner. Yet, despite ample evidence suggesting a key role for mRNA translation in shaping the proteome in health and disease, it remains largely unexplored. Here, we present a guide for the extraction of mRNA engaged in translation using polysome fractionation with linear and optimized sucrose gradients. The isolated polysome-associated RNA is then quantified, in parallel with total mRNA from the same conditions, using methods such as RNA sequencing; and the resulting data set is analyzed to derive transcriptome-wide insights into how mRNA translation is modulated. The methods we describe are applicable to cultured cells, small numbers of FACS-isolated primary cells, and small tissue samples from biobanks or animal studies. Accordingly, this approach can be applied to study in detail how ERα and other factors control gene expression by selectively modulating mRNA translation both in vitro and in vivo.


Asunto(s)
Biosíntesis de Proteínas , Transcriptoma , Animales , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
16.
STAR Protoc ; 3(1): 101037, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34977682

RESUMEN

Micropeptides are emerging as important regulators of various cellular processes. Long non-coding RNAs (lncRNAs) serve as a source of micropeptide-encoding small reading frames. The techniques to detect micropeptides or translating lncRNAs, such as mass spectrometry and ribosome profiling, are sophisticated and expensive. Here, we present an easy and cost-effective protocol to screen for potential micropeptide-encoding lncRNAs by polysome profiling in suspension cell lines. When combined with quantitative PCR, this protocol facilitates the identification of a number of translating lncRNAs simultaneously. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).


Asunto(s)
ARN Largo no Codificante , Línea Celular , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , Polirribosomas/genética , ARN Largo no Codificante/genética
17.
Methods Mol Biol ; 2520: 309-319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34611819

RESUMEN

Polysome profiling is a technique that uses sucrose density gradient ultracentrifugation to separate complexes of mRNAs associated with one or more ribosomes. Here we describe polysome profiling analysis in human pluripotent stem cells (hPSCs) using a continuous ultraviolet spectrophotometer and a gradient fractionator. We provide protocols for processing sucrose gradient fractions for isolation of RNA for RT-qPCR or large-scale sequencing analysis, used to establish the translational status of specific mRNAs and identify the role of noncoding RNA in translation.


Asunto(s)
Células Madre Pluripotentes , Biosíntesis de Proteínas , Humanos , Células Madre Pluripotentes/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sacarosa/metabolismo
18.
Methods Mol Biol ; 2404: 69-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694604

RESUMEN

mRNA translation is a key step in gene expression that allows the cell to qualitatively and quantitatively modulate the cell's proteome according to intra- or extracellular signals. Polysome profiling is the most comprehensive technique to study both the translation state of mRNAs and the protein machinery associated with the mRNAs being translated. Here we describe the procedure commonly used in our laboratory to gain insights into the molecular mechanisms underlying translation regulation under pathophysiological conditions.


Asunto(s)
Biosíntesis de Proteínas , Perfilación de la Expresión Génica , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Nucleic Acids Res ; 49(21): 12517-12534, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850140

RESUMEN

The pioneer (or first) round of translation of newly synthesized mRNAs is largely mediated by a nuclear cap-binding complex (CBC). In a transcriptome-wide analysis of polysome-associated and CBC-bound transcripts, we identify RN7SL1, a noncoding RNA component of a signal recognition particle (SRP), as an interaction partner of the CBC. The direct CBC-SRP interaction safeguards against abnormal expression of polypeptides from a ribosome-nascent chain complex (RNC)-SRP complex until the latter is properly delivered to the endoplasmic reticulum. Failure of this surveillance causes abnormal expression of misfolded proteins at inappropriate intracellular locations, leading to a cytosolic stress response. This surveillance pathway also blocks protein synthesis through RNC-SRP misassembled on an mRNA encoding a mitochondrial protein. Thus, our results reveal a surveillance pathway in which pioneer translation ensures proper targeting of endoplasmic reticulum and mitochondrial proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Mitocondriales/genética , Modelos Genéticos , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/genética , Transducción de Señal/genética
20.
Nucleic Acids Res ; 49(21): 12358-12376, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792171

RESUMEN

The rapid transport of ribosomal proteins (RPs) into the nucleus and their efficient assembly into pre-ribosomal particles are prerequisites for ribosome biogenesis. Proteins that act as dedicated chaperones for RPs to maintain their stability and facilitate their assembly have not been identified in filamentous fungi. PlCYP5 is a nuclear cyclophilin in the nematophagous fungus Purpureocillium lilacinum, whose expression is up-regulated during abiotic stress and nematode egg-parasitism. Here, we found that PlCYP5 co-translationally interacted with the unassembled small ribosomal subunit protein, PlRPS15 (uS19). PlRPS15 contained an eukaryote-specific N-terminal extension that mediated the interaction with PlCYP5. PlCYP5 increased the solubility of PlRPS15 independent of its catalytic peptide-prolyl isomerase function and supported the integration of PlRPS15 into pre-ribosomes. Consistently, the phenotypes of the PlCYP5 loss-of-function mutant were similar to those of the PlRPS15 knockdown mutant (e.g. growth and ribosome biogenesis defects). PlCYP5 homologs in Arabidopsis thaliana, Homo sapiens, Schizosaccharomyces pombe, Sclerotinia sclerotiorum, Botrytis cinerea and Metarhizium anisopliae were identified. Notably, PlCYP5-PlRPS15 homologs from three filamentous fungi interacted with each other but not those from other species. In summary, our data disclosed a unique dedicated chaperone system for RPs by cyclophilin in filamentous fungi.


Asunto(s)
Ciclofilinas/genética , Proteínas Fúngicas/genética , Hypocreales/genética , Chaperonas Moleculares/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Secuencia de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ciclofilinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hypocreales/metabolismo , Hypocreales/patogenicidad , Chaperonas Moleculares/metabolismo , Mutación , Micelio/metabolismo , Filogenia , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/genética , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA