Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.266
1.
Sci Rep ; 14(1): 11454, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769105

This study focuses on pectin covalently linked in cell walls from two sources, apples and carrots, that was extracted using diluted alkali, and it describes changes in the rheological properties of diluted alkali-soluble pectin (DASP) due to enzymatic treatment. Given DASP's richness of rhamnogalacturonan I (RG-I), RG-I acetyl esterase (RGAE), rhamnogalacturonan endolyase (RGL), and arabinofuranosidase (ABF) were employed in various combinations for targeted degradation of RG-I pectin chains. Enzymatic degradations were followed by structural studies of pectin molecules using atomic force microscopy (AFM) as well as measurements of rheological and spectral properties. AFM imaging revealed a significant increase in the length of branched molecules after incubation with ABF, suggesting that arabinose side chains limit RG-I aggregation. Structural modifications were confirmed by changes in the intensity of bands in the pectin fingerprint and anomeric region on Fourier transform infrared spectra. ABF treatment led to a decrease in the stability of pectic gels, while the simultaneous use of ABF, RGAE, and RGL enzymes did not increase the degree of aggregation compared to the control sample. These findings suggest that the association of pectin chains within the DASP fraction may rely significantly on intermolecular interactions. Two mechanisms are proposed, which involve side chains as short-range attachment points or an extended linear homogalacturonan conformation favoring inter-chain interactions over self-association.


Pectins , Rheology , Pectins/chemistry , Pectins/metabolism , Microscopy, Atomic Force , Alkalies/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Daucus carota/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Cell Wall/chemistry , Cell Wall/metabolism
2.
J Agric Food Chem ; 72(20): 11773-11781, 2024 May 22.
Article En | MEDLINE | ID: mdl-38722333

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.


Enzyme Stability , Polysaccharide-Lyases , Polysaccharides , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Kinetics , Hot Temperature , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Substrate Specificity , Molecular Docking Simulation , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ulva/chemistry , Ulva/enzymology , Ulva/genetics , Molecular Dynamics Simulation
3.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738910

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Aspergillus niger , Fruit and Vegetable Juices , Fungal Proteins , Polysaccharide-Lyases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Fruit and Vegetable Juices/analysis , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hydrogen-Ion Concentration , Food Handling , Acids/chemistry , Acids/metabolism , Acids/pharmacology , Citrus sinensis/chemistry , Pectins/chemistry , Pectins/metabolism , Enzyme Stability
4.
Dev Comp Immunol ; 156: 105177, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593892

Horizontal gene transfer (HGT) is an important evolutionary force in the formation of prokaryotic and eukaryotic genomes. In recent years, many HGT genes horizontally transferred from prokaryotes to eukaryotes have been reported, and most of them are present in arthropods. The Pacific white shrimp Litopenaeus vannamei, an important economic species of arthropod, has close relationships with bacteria, providing a platform for horizontal gene transfer (HGT). In this study, we analyzed bacteria-derived HGT based on a high-quality genome of L. vannamei via a homology search and phylogenetic analysis, and six HGT genes were identified. Among these six horizontally transferred genes, we found one gene (LOC113799989) that contains a bacterial chondroitinase AC structural domain and encodes an unknown glycosaminoglycan (GAG) lyase in L. vannamei. The real-time quantitative PCR results showed that the mRNA expression level of LOC113799989 was highest in the hepatopancreas and heart, and after stimulation by Vibrio parahaemolyticus, its mRNA expression level was rapidly up-regulated within 12 h. Furthermore, after injecting si-RNA and stimulation by V. parahaemolyticus, we found that the experimental group had a higher cumulative mortality rate in 48 h than the control group, indicating that the bacteria-derived GAG lyase can reduce the mortality of shrimp with respect to infection by V. parahaemolyticus and might be related to the resistance of shrimp to bacterial diseases. Our findings contribute to the study of the function of GAGs and provide new insights into GAG-related microbial pathogenesis and host defense mechanisms in arthropods.


Gene Transfer, Horizontal , Penaeidae , Phylogeny , Vibrio parahaemolyticus , Animals , Penaeidae/immunology , Penaeidae/microbiology , Penaeidae/genetics , Vibrio parahaemolyticus/physiology , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Hepatopancreas/microbiology , Hepatopancreas/immunology , Hepatopancreas/metabolism , Bacteria , Immunity, Innate/genetics , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Vibrio Infections/immunology
5.
Int J Biol Macromol ; 266(Pt 2): 131283, 2024 May.
Article En | MEDLINE | ID: mdl-38561119

Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.


Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Substrate Specificity , Acetylgalactosamine/chemistry , Acetylgalactosamine/metabolism , Escherichia coli/genetics , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Amino Acid Sequence , Oligosaccharides/chemistry , Oligosaccharides/metabolism
6.
Carbohydr Polym ; 333: 121929, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38494211

Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/µmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/µmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.


Disaccharides , Oligosaccharides , Substrate Specificity , Oligosaccharides/metabolism , Disaccharides/metabolism , Polysaccharide-Lyases/metabolism , Alginates/metabolism , Hydrogen-Ion Concentration , Bacterial Proteins/chemistry
7.
J Agric Food Chem ; 72(6): 3045-3054, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38307881

A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.


Heparin , Polysaccharide-Lyases , Heparin/analysis , Heparin/chemistry , Heparin/metabolism , Heparin Lyase/genetics , Heparin Lyase/chemistry , Heparin Lyase/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Binding Sites
8.
Carbohydr Res ; 536: 109045, 2024 Feb.
Article En | MEDLINE | ID: mdl-38340525

PelQ1 from Saccharobesus litoralis is a Ca2+-dependent pectate lyase belonging to the polysaccharide lyase family 1 (PL1). Although being an endolytic enzyme, it degraded polygalacturonate into predominantly unsaturated trimer in an exolytic manner with delayed production of dimer, tetramer and pentamer. The enzyme harbours a C-terminal domain from the carbohydrate-binding module family 13 (CBM13), whose presence facilitated the production of dimer. PelQ1's homology model showed that it possessed a well-conserved catalytic cleft, with R232 acting as the general base and R203 as the general acid. Structural comparison with DcPelC, a similar trimer-generating pectate lyase from Dickeya chrysanthemi EC16, implied that both enzymes' catalytic clefts encompassed at least eight subsites, i.e. -5 to +3. The unequal distribution of the subsites between the reducing and non-reducing ends of the cleavage site might be responsible for the exolytic generation of the trimer. As all but the -1, +1 and + 2 subsites could accommodate methylated galacturonate, this subclass of PL1 pectate lyases may function to help break up methylated pectin.


Dickeya chrysanthemi , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Dickeya chrysanthemi/metabolism
9.
Bioresour Technol ; 397: 130481, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395233

Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.


Cellulase , Phaeophyceae , Seaweed , Cellulase/metabolism , Hydrolysis , Fertilizers , Polysaccharide-Lyases/metabolism , Seaweed/metabolism , Alginates/metabolism , Oligosaccharides/metabolism
10.
Nat Commun ; 15(1): 22, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167822

Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.


Litchi , Phytophthora , Litchi/metabolism , Phytophthora/physiology , Polysaccharide-Lyases/metabolism , Proteins/metabolism , Plant Immunity , Cell Death , Plant Diseases
11.
Ann Bot ; 133(4): 547-558, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38180460

BACKGROUND AND AIMS: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS: In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS: The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Cell Wall , Fruit , Pectins , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Fruit/enzymology , Cell Wall/metabolism , Pectins/metabolism
12.
Carbohydr Res ; 536: 109022, 2024 Feb.
Article En | MEDLINE | ID: mdl-38242069

Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP). Addressing this, our study centers on the alginate lyase AlyB from Vibrio Splendidus OU02, which uniquely breaks down alginate into mono-distributed trisaccharides. This enzyme features a polysaccharide lyase family 7 domain (PL-7) and a CBM32 carbohydrate-binding module connected by a helical structure. Through normal-mode-based docking and all-atom molecular simulations, we demonstrate that AlyB's substrate and product specificities are influenced by the spatial conformation of the catalytic pocket and the flexibility of its structure. The helically attached CBM is pivotal in releasing trisaccharides, which is crucial for avoiding further degradation. This study sheds light on AlyB's specificity and efficiency and contributes to the evolving field of enzyme design for producing targeted oligosaccharides, with significant implications for various bioindustries.


Molecular Dynamics Simulation , Oligosaccharides , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Trisaccharides , Alginates/metabolism , Substrate Specificity , Hydrogen-Ion Concentration
13.
Enzyme Microb Technol ; 175: 110395, 2024 Apr.
Article En | MEDLINE | ID: mdl-38237242

Pectinase plays a crucial role in ramie degumming. A gene encoding a putative pectate lyase from Bacillus sp. strain B58-2 was cloned and heterologously expressed in Escherichia coli. The amplified gene BvelPL1 encoded a mature protein of 400 amino acids. BvelPL1 shared the highest amino acid sequence identity (78.75%) with the enzymatically characterized pectate lyase Pel from Bacillus subtilis strain RCK (GenBank: AFH66771.1). The purified recombinant enzyme rBvelPL1-Ec exhibited a maximum specific activity of 2433.26 U/mg at pH 8.5 and 50 °C towards polygalacturonic acid. This specific activity was higher than that of most reported pectate lyases. Remarkably, the enzymatic activity of rBvelPL1-Ec increased by 23.28 times in the presence of 0.4 mM calcium ion. The effect of calcium ion on promoting the enzymatic activity of rBvelPL1-Ec was greater than that for all reported pectate lyases. After degumming with rBvelPL1-Ec, a weight loss of 21.27 ± 1.17% of circled ramie fibers was obtained, and the surfaces of the ramie fibers became smoother. Moreover, a weight loss of 30.47 ± 0.46% was obtained through enzymatic treated and subsequent NaOH treated circled ramie fibers. The excellent performance in degumming suggests that rBvelPL1-Ec may serve as a promising biocatalyst in the textile industry.


Bacillus , Boehmeria , Boehmeria/genetics , Calcium/metabolism , Cloning, Molecular , Polysaccharide-Lyases/metabolism , Weight Loss , Hydrogen-Ion Concentration
14.
Carbohydr Polym ; 326: 121605, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38142093

Sodium alginate is one of the most abundant sustainable gum source for dietary fiber production. However, the preparation efficiencies of low viscosity soluble dietary fiber from sodium alginate remain low. Here, a novel alginate lyase gene (FsAly7) from Flammeovirga sp. was identified and high-level expressed in Pichia pastoris for low viscosity soluble dietary fiber production. The highest enzyme production of 3050 U mL-1 was achieved, which is by far the highest yield ever reported. FsAly7 was used for low viscosity soluble dietary fiber production from sodium alginate, and the highest degradation rate of 85.5 % was achieved under a high substrate content of 20 % (w/v). The molecular weight of obtained soluble dietary fiber converged to 10.75 kDa. FsAly7 catalyzed the cleavage of glycosidic bonds in alginate chains with formation of unsaturated non-reducing ends simultaneously in the degradation process, thus altered the chemical structures of hydrolysates. The soluble dietary fiber exhibited excellent properties, including low viscosity, high oil adsorption capacity activity (2.20 ± 0.03 g g-1) and high emulsifying activity (60.05 ± 2.96 mL/100 mL). This investigation may provide a novel alginate lyase catalyst as well as a solution for the efficient production of low viscosity soluble dietary fiber from sodium alginate.


Alginates , Bacteroidetes , Glucuronic Acid/metabolism , Alginates/metabolism , Viscosity , Bacteroidetes/genetics , Polysaccharide-Lyases/metabolism , Dietary Fiber/metabolism , Substrate Specificity
15.
Plant Physiol Biochem ; 206: 108294, 2024 Jan.
Article En | MEDLINE | ID: mdl-38159547

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.


Fragaria , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Rhamnogalacturonans/metabolism , Pectins/metabolism , Plants, Genetically Modified/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant
16.
Mar Drugs ; 21(11)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37999388

Alginate oligosaccharides prepared by alginate lyases attracted great attention because of their desirable biological activities. However, the hydrolysis products are always a mixture of oligosaccharides with different degrees of polymerization, which increases the production cost because of the following purification procedures. In this study, an alginate lyase, Alg4755, with high product specificity was identified, heterologously expressed, and characterized from Vibrio alginolyticus S10, which was isolated from the intestine of sea cucumber. Alg4755 belonged to the PL7 family with two catalytic domains, which was composed of 583 amino acids. Enzymatic characterization results show that the optimal reaction temperature and pH of Alg4755 were 35 °C and 8.0, respectively. Furthermore, Alg4755 was identified to have high thermal and pH stability. Moreover, the final hydrolysis products of sodium alginate catalyzed by Alg4755 were mainly alginate disaccharides with a small amount of alginate trisaccharides. The results demonstrate that alginate lyase Alg4755 could have a broad application prospect because of its high product specificity and desirable catalytic properties.


Disaccharides , Vibrio alginolyticus , Vibrio alginolyticus/genetics , Vibrio alginolyticus/metabolism , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Substrate Specificity , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Alginates/metabolism
17.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Article En | MEDLINE | ID: mdl-37791757

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Alginates , Bacteria , Humans , Alginates/metabolism , Bacteria/metabolism , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Substrate Specificity
18.
Carbohydr Res ; 534: 108962, 2023 Dec.
Article En | MEDLINE | ID: mdl-37769377

It is of great significance to develop marine resources and study its potential biological activity by using alginate lyase produced by marine psychrophilic bacteria. In the previous study, a new marine psychrophilic bacterium (Cobetia marina HQZ08) was screened from the growth area of Laminaria japonica, and it was found that the strain could efficiently produce alginate-degrading enzyme (Aly30). In this paper, the ability of Aly30 to degrade alginate was optimized and the optimal degradation conditions were obtained. It was found that the main degradation product of alginate oligosaccharides was trisaccharide. In vitro cell experiments showed that the antitumor activity of low molecular weight alginate oligosaccharides was better than that of high molecular weight alginate oligosaccharides. In summary, Aly30 had the potential to produce alginate oligosaccharides with low degree of polymerization and antitumor activity, which provided a reference for the enzymatic preparation and application of alginate oligosaccharides.


Alginates , Halomonadaceae , Alginates/pharmacology , Alginates/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Substrate Specificity , Hydrogen-Ion Concentration
19.
Chembiochem ; 24(20): e202300357, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37402642

Kelp is an abundant, farmable biomass-containing laminarin and alginate as major polysaccharides, providing an excellent model substrate to study their deconstruction by simple enzyme mixtures. Our previous study showed strong reactivity of the glycoside hydrolase family 55 during hydrolysis of purified laminarin, raising the question of its reactivity with intact kelp. In this study, we determined that a combination of a single glycoside hydrolase family 55 ß-1,3-exoglucanase with a broad-specificity alginate lyase from the polysaccharide lyase family 18 gives efficient hydrolysis of untreated kelp to a mixture of simple sugars, that is, glucose, gentiobiose, mannitol-end glucose, and mannuronic and guluronic acids and their soluble oligomers. Quantitative assignments from nanostructure initiator mass spectrometry (NIMS) and 2D HSQC NMR spectroscopy and analysis of the reaction time-course are provided. The data suggest that binary combinations of enzymes targeted to the unique polysaccharide composition of marine biomass are sufficient to deconstruct kelp into soluble sugars for microbial fermentation.


Cellulases , Kelp , Kelp/metabolism , Hydrolysis , Polysaccharide-Lyases/metabolism , Polysaccharides , Glucose , Glycoside Hydrolases/metabolism , Substrate Specificity
20.
Mar Drugs ; 21(4)2023 Mar 27.
Article En | MEDLINE | ID: mdl-37103348

Seaweeds are considered to be third-generation renewable biomasses, the comprehensive utilization of which has drawn increasing attention in recent years. A novel cold-active alginate lyase (VfAly7) was identified from Vibrio fortis and biochemically characterized for brown seaweed utilization. The alginate lyase gene was high-level expressed in Pichia pastoris, with an enzyme yield of 560 U/mL and a protein content of 9.8 mg/mL by high-cell density fermentation. The recombinant enzyme was most active at 30 °C and pH 7.5, respectively. VfAly7 was a bifunctional alginate lyase with both poly-guluronate and poly-mannuronate hydrolysis activities. On the basis of VfAly7, a bioconversion strategy for the utilization of brown seaweed (Undaria pinnatifida) was developed. The obtained AOSs showed stronger prebiotic activity towards tested probiotics when compared to that of commercial fructooligosaccharides (FOSs), while the obtained protein hydrolysates displayed strong xanthine oxidase inhibitory activity with IC50 of 3.3 mg/mL. This study provided a novel alginate lyase tool as well as a biotransformation route for the utilization of seaweeds.


Seaweed , Seaweed/chemistry , Subtilisins/metabolism , Polysaccharide-Lyases/metabolism , Alginates/metabolism , Substrate Specificity , Hydrogen-Ion Concentration
...